УДК 543.422.3-76:611.844.7

К.О. Степанюк¹, І.І. Геращенко¹, О.Ю. Чуніхін²

ДОСЛІДЖЕННЯ ВЗАЄМОДІЇ ЦИНКУ(ІІ) З МАКРОМОЛЕКУЛЯРНИМИ КОМПОНЕНТАМИ СКЛОПОДІБНОГО ТІЛА МЕТОДАМИ УФ-СПЕКТРОСКОПІЇ ТА ДИНАМІЧНОГО РОЗСІЮВАННЯ СВІТЛА

¹ Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України вул. Генерала Наумова, 17, Київ, 03164, Україна, E-mail: igorgera57@ukr.net ² Інститут біохімії ім. О.В. Палладіна Національної академії наук України вул. Леонтовича, 9, Київ, 01601, Україна

Одним із завдань під час створення лікарського засобу, що містить гідрогель склоподібного тіла (СТ), нанорозмірний кремнезем та сполуку цинку, є дослідження закономірностей комплексоутворення гіалуронової кислоти та білка – основних макромолекулярних компонентів СТ – з йонами цинку.

Нами виявлено, що при змішуванні розчинів CT і сульфату цинку спостерігається ріст оптичної густини в УФ діапазоні спектра, ймовірно за рахунок розсіювання світла в результаті збільшення числа макромолекулярних агрегатів. Доведено, що цей ефект не є наслідком утворення нерозчинних сполук через зміну pH середовища і, таким чином, може бути пояснений взаємодією (комплексоутворенням) компонентів CT з йонами цинку.

3 метою встановлення закономірностей комплексоутворення проводили спектрофотометричне титрування СТ і окремо розчинів очищеного гіалуронату натрію та модельного білка – бичачого сироваткового альбуміну (БСА) – йонами цинку. До сталої кількості СТ, розведеного водою 1:5, додавали зростаючі кількості розчину сульфату шинку, після чого реєстрували УФ-спектр. Як виявилось, після додавання сульфату цинку в діапазоні концентрацій 2.5–5.0 мас. % приріст оптичної густини майже одразу стає максимальним і не залежить від кількості титранту, що можна пояснити насиченням усіх активних центрів СТ, до яких належать карбоксильні групи гіалуронової кислоти та електронодонорні групи білка: NH_2 -групи, амідний зв'язок, тіогрупи тощо. В діапазоні 0–0.5 мас. % сульфату цинку (0–17.5 ммоль/л Zn^{2+}) спостерігається поступове збільшення оптичної густини, що дозволило розрахувати параметри рівноваги в системі $CT + n Zn^{2+} \leftrightarrow CT \cdot (Zn^{2+})_n$. Для БСА, який також демонстрував поступове збільшення оптичної густини в УФ діапазоні, з метою визначення стехіометрії комплексу $\overline{bCA} \cdot (Zn^{2+})_n$ був використаний метод молярних відношень, при цьому встановлено, що на одну молекулу БСА припадає близько 800 йонів цинку. У разі очищеного гіалуронату натрію метод спектрофотометричного титрування виявився непридатним або комплексоутворення взагалі не відбувалось. Отже, взаємодія СТ із йонами цинку здійснюється переважно за рахунок білкового компонента, а не гіалуронану. Розмірні характеристики агрегатів, що утворюються внаслідок взаємодії СТ і БСА з йонами цинку, досліджено методом динамічного розсіювання світла (ДРС).

Ключові слова: йони цинку, склоподібне тіло, гіалуронова кислота, бичачий сироватковий альбумін, комплексоутворення, УФ-спектр, ДРС-спектр

ВСТУП

Лікування гнійно-запальних захворювань у літніх людей, особливо на тлі цукрового діабету, залишається нагальною проблемою у хірургії [1]. Клінічним досвідом доведено, що для гнійних ран з повільним перебігом ранового процесу (трофічні виразки, пролежні, синдром діабетичної стопи тощо), окрім місцевого застосування антибіотиків (тирозур, гентаксан, бактробан, банеоцин, альтарго тощо) ефективністю вирізняються ранозагоювальні препарати репаративної дії. Серед таких засобів широко вживаним є «Куріозин[®]» виробництва компанії Гедеон Ріхтер (Угорщина) у вигляді гелю і розчину, до складу яких входять хлорид або сульфат цинку і гіалуронова кислота, яку здобувають з півнячих гребенів [2]. Вміст інгредієнтів підібрано таким чином, що в результаті взаємодії між ними утворюється гіалуронат цинку – комплексна сполука, в якій атом цинку перебуває у тетраедричній координації [3]. Гіалуронат цинку виконує роль депо, з якого поступово вивільняються йони цинку, підтримуючи його терапевтичну концентрацію в рані. Відомо, що цинк бере участь у синтезі колагену – основного білка сполучної тканини [4], і тому розглядається як чинник нормального функціонування шкіри, його сполуки давно використовують у дерматологічній практиці (цинку оксид. цинку сульфат, цинку хлорид. цинку гіалуронат тощо). Крім того, сполуки цинку виявляють певну антимікробну активність. Гіалуронова кислота, або гіалуронан, яка належить до класу глікозаміногліканів, також має лікувальні й відновлювальні властивості щодо ран і дефектів шкіри, її широко застосовують складі лікувальних y [5, 6]. косметологічних засобів Експериментально доведено, що ця субстанція має також імуномодулюючу, регенеративну, антиоксидантну, противірусну, а також інші вили активності [7]. Отже, куріозин комплексною дією його вирізняється інгредієнтів.

Одним з основних джерел здобування гіалуронової кислоти є склоподібне тіло з очей великої рогатої худоби, де вона вперше була виявлена у 1934 році К. Мейером і Дж. Палмером [8]. Склоподібне тіло (СТ) є біологічним гідрогелем, основна маса якого припадає на воду – 99 % і солі – 0.9 %; частка макромолекулярних компонентів високогідратованого колагену (II, V/XI і IX) типу і гіалуронової кислоти – становить 0.1 % [9, 10] (за даними [11] близько 0.15 мас. %). За результатами ¹Н ЯМР спектроскопічних досліджень [12] в гідрогелі СТ практично вся вода зв'язана з полімерною матрицею, тоді як на частку вільної води доводиться лише 1 %. Оскільки гіалуронан перебуває в СТ у вигляді натрієвої солі, рН препарату становить близько 8.9. Між фібрилами колагену і від'ємно зарядженими ланцюгами гіалуронану немає міцного хімічного зв'язку, можна розділити центрифугуванням. ïx Високодисперсний кремнезем адсорбує зі СТ лише білковий компонент, гіалуронан залишається у розчині [13]. Препарат СТ використовують y медицині як імуностимулюючий та біогенний засіб [14, 15], у тому числі для лікування ран. Згідно з анотацією, препарат прискорює регенерації процеси тканин, сприяє поліпшенню процесів обміну, виявляє стимулюючий вплив на утворення кісткової мозолі, розм'якшує рубцеву тканину та сприяє її розсмоктуванню [16]. Це дозволяє припустити, що у препаратах для місцевого застосування замість очишеної гіалуронової кислоти можна використовувати СТ, яке до того ж містить колаген та інші біогенні сполуки. Виходячи з цього, ми поставили за мету створити комплексний ранозагоювальний препарат – аналог закордонного куріозину, – який містить гідрогель СТ, сполуку цинку та додатково нанорозмірний кремнезем для надання препарату сорбційних властивостей. Фізико-хімічний аспект розроблення препарату полягає у детальному вивченні взаємодії між його інгредієнтами.

Метою роботи було дослідити методами спектрофотометричного титрування та динамічного розсіювання світла взаємодію СТ та його основних макромолекулярних компонентів – гіалуронової кислоти та білка, з двовалентними йонами цинку.

МАТЕРІАЛИ ТА МЕТОДИ ДОСЛІДЖЕННЯ

У роботі використовували: 1) препарат «Склоподібне тіло» в ампулах по 2 мл виробництва ЗАТ «Біофарма», м. Київ, здобутий з очей великої рогатої худоби; 2) очищений натрію гіалуронат з середньою молекулярною масою 1.55·10⁶ Да, отриманий біотехнологічним способом, виробник «Lifecore», США; 3) бичачий сироватковий альбумін (м. Ставрополь, Росія); 4) цинку сульфат гептагідрат хімічно чистий.

Оптичні дослідження виконували на спектрофотометрі UV-visible Helios Gamma (Unicam. Велика Британія) з програмним забезпеченням Aurora. Прилад дозволяє проводити сканування діапазоні y 190-1100 нм, ширина лінії монохроматора становить 2 нм. До розчину СТ, одержаного розведенням вихідного препарату водою 1:5, а також розчинів БСА (0.05 мас. %) і гіалуронату натрію (0.25 мас. %) додавали різні кількості (5; 1; 0.5 і 0.1 %) розчинів сульфату цинку, готуючи таким чином серії розчинів із рівномірно зростаючим вмістом йонів Zn²⁺. Розчини витримували 10 хв, після чого знімали спектри в УФ діапазоні. Концентрацію цинку в розчинах визначали дитизоновим методом [17].

Розмірні комплексів характеристики досліджували допомогою методу за динамічного розсіювання світла [18, 19] на приладі «ZetaSizer-3» (Malvern Instruments, Велика Британія) з обчислювальним блокомкорелятором Multicomputing correlator type 7032 се, гелій-неоновим лазером ЛГН-111 з довжиною хвилі 633 нм і потужністю 25 мВт. автокореляційної Реєстрацію функції розсіюваного від суспензії комплексів лазерного опромінення проводили протягом 1 хв, 5-разово під кутом розсіювання 90°. Автокореляційну функцію опрацьовували за стандартної комп'ютерної допомогою програми PCS-Size mode v.1.61. Розподіл за розмірами отримували алгоритмом за CONTIN.

Гідродинамічний діаметр комплексів розраховується за допомогою формули Стокса-Ейнштейна:

$$d(H) = \frac{k_B \cdot T}{3\pi \eta D}$$

де d(H) – гідродинамічний діаметр; k_B – стала Больцмана; T – абсолютна температура, К; η – динамічна в'язкість середовища, в якій суспендовані частинки; D – коефіцієнт трансляційної дифузії.

РЕЗУЛЬТАТИ ТА ОБГОВОРЕННЯ

Комплексоутворення йонів цинку з компонентами СТ. При змішуванні розчинів СТ і сульфату цинку спостерігається ледь помітне помутніння, що супроводжується ростом оптичної густини в УФ діапазоні. З одного боку, це можна пояснити Zn²⁺ йонів комплексоутворенням 3 компонентами СТ, а з іншого – утворенням нерозчинних сполук, гідроксиду цинку або кислотної форми гіалуронану, внаслідок зміни pН середовища. Тому першим завданням було з'ясування цього ключового питання. Як виявилось, після додавання до 5 % розчину сульфату цинку рівного об'єму води із рН 9.0 (таке значення рН має СТ) спектр залишається на нульовій лінії, тобто ріст оптичної густини не може бути наслідком утворення нерозчинного

гідроксиду цинку. Відповідно, після змішування розчину СТ з рівним об'ємом води із рН 4.5 (таке значення рН має 5 % розчин ZnSO₄·7H₂O) спектр також не змінюється, тобто помутніння не може бути наслідком утворення дисперсії гіалуронової Таким кислоти. чином, йони цинку взаємодіють 3 макромолекулярними компонентами СТ з утворенням агрегатів відповідного розміру, що призводить до зростання інтенсивності розсіяного світла і, одночасно, до зменшення інтенсивності світла, що проходить крізь дисперсію. Оскільки форма спектра не змінюється, виявлений ефект можна охарактеризувати як розсіювання світла без зміни довжини хвилі на об'єктах, розміри яких значно менші за довжину хвилі світла, що розсіюється (релеєвське розсіювання) [20].

Наступниим етапом дослідження було спектрофотометричне титрування розчину СТ (1:5) йонами Zn²⁺ з метою встановлення константи рівноваги процесу комплексоутворення.

При титруванні 5 і 1 % розчинами сульфату цинку значення оптичної густини майже одразу стає максимальним і не залежить від кількості титранту, при цьому спектри в усьому діапазоні, від 240 до 300 нм, накладаються один на одного. Це можна пояснити насиченням усіх активних центрів СТ, до яких, імовірно, належать карбоксильні групи гіалуронової кислоти та електронодонорні групи колагену: вільні NH₂-групи, пептидний зв'язок, тіогрупи тощо. При титруванні 0.5 % розчином сульфату цинку вдалося досягти поступового збільшення оптичної густини (рис. 1), що дало змогу дослідити параметри рівноваги в системі $CT + n Zn^{2+} \leftrightarrow CT \cdot (Zn^{2+})_n$.

Для обчислення константи рівноваги використовували значення оптичної густини (*D*) за довжини хвилі 260 нм (табл. 1), отримані під час титрування склоподібного тіла 0.5 % і частково 1 % розчином (№№ 1–6 і 7–9, відповідно) сульфату цинку.

За даними, наведеними в табл. 1, будували залежність частки зв'язаних йонів цинку (*v*) від їхньої концентрації в розчині (рис. 2, крива 1).

Рис. 1. Спектри розчинів №№ 1-6 (табл. 1) із поступово зростаючим вмістом йонів Zn²⁺

Таблиця 1. Вихідні дані для обчислення константи рівноваги в системі $CT + n Zn^{2+} \leftrightarrow CT \cdot (Zn^{2+})_n$, $\lambda = 260$ нм

Парамотр	Номер розчину; значення параметра									
Параметр	1	2	3	4	5	6	7	8	9	
$C(\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}), \%$	0	0.05	0.1	0.15	0.2	0.25	0.3	0.4	0.5	
$C(Zn^{2+})$, ммоль/л	0	1.75	3.5	5.25	7.0	8.75	10.5	14	17.5	
D_{x}	0.196	0.225	0.293	0.361	0.396	0.424	0.439	$0.448^{*)}$	$0.439^{*)}$	
D_{x} – D_{0}	0	0.029	0.097	0.165	0.200	0.228	0.243	0.248	0.248	
$D_{\text{max}} - D_0 = 0.444 - 0.196$	0.248	0.248	0.248	0.248	0.248	0.248	0.248	0.248	0.248	
$v = (D_x - D_0)/(D_{max} - D_0)$	0	0.117	0.391	0.665	0.806	0.919	0.980	1.00	1.00	

^{*)} середнє значення *D_{max}* для розчинів № 8 і № 9 становить 0.444

Рис. 2. Залежність ступеня зв'язування йонів Zn²⁺ від їхньої концентрації в розчинах «сульфат цинку – CT» (крива *I*) і «сульфат цинку – БСА» (крива *2*)

Аналітичний вираз цієї залежності має вигляд:

$$\nu = \frac{[Zn^{2+}]}{K + [Zn^{2+}]}$$

Залежності подібного типу відповідають процесу насичення, різновидом якого, зокрема, є адсорбція на поверхні, що описується аналогічною кривою – ізотермою адсорбції. З графіка можна приблизно визначити константу рівноваги (константу

нестійкості комплексу $CT \cdot (Zn^{2+})_n$) як концентрацію йонів Zn^{2+} , за якої ступінь зв'язування дорівнює 0.5; вона становить ~4 ммоль/л.

Комплексоутворення йонів цинку з БСА. Титрування проводили 0.5 і 0.1 % розчинами сульфату цинку, оптичні густини сканували в діапазоні довжин хвиль 230-350 нм. При титрування СТ. цьому, як в разі i поступове спостерігається збільшення оптичної густини в усьому досліджуваному діапазоні (рис. 3). Після досягнення загальної Zn^{24} концентрації йонів 3.5 ммоль/л

зростання оптичної густини різко уповільнюється, можна шо пояснити насиченням усіх місць зв'язування БСА, до яких належать вільні -СООН і -NH2 групи, імідазольні та тіогрупи тощо, а також, імовірно, пептидні зв'язки білка [21]. Для дослідження рівноваги В системі $\mathbf{5CA} + \mathbf{n} \mathbf{Zn}^{2+} \leftrightarrow \mathbf{5CA} \cdot (\mathbf{Zn}^{2+})_{\mathbf{n}}$ використовували зведені значення оптичних густин за довжини 277 нм (табл. 2). хвилі яка відповідає максимуму поглинання білка завдяки присутності в ньому ароматичних кислот: фенілаланіну, тирозину та триптофану.

Рис. 3. Спектри розчинів (табл. 2) із поступово зростаючим вмістом йонів Zn²⁺

Таблиця 2. Вихідні дані для обчислення константи нестійкості та стехіометрії комплексу БСА \cdot (Zn²⁺)_n, $\lambda = 277$ нм

Параметр	Номер розчину; значення параметра									
	1	2	3	4	5	6	7	8	9	
$C(\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}), \%$	0	0.0125	0.025	0.0375	0.05	0.1	0.15	0.2	0.25	
<i>C</i> (Zn ²⁺), ммоль/л	0	0.4375	0.875	1.3125	1.75	3.5	5.25	7.0	8.75	
<i>С</i> (БСА), %	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	
<i>С</i> (БСА), ммоль/л	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	
$n(\operatorname{Zn}^{2+}) / n(\operatorname{BCA})$	0	122	243	365	486	972	1458	1944	2430	
D_{x}	0.184	0.201	0.371	0.764	0.874	1.238	1.276	$1.342^{*)}$	$1.284^{*)}$	
D_{x} – D_{0}	0	0.017	0.187	0.580	0.690	1.054	1.092	1.129	1.129	
$D_{\text{max}} - D_0 = 1.313 - 0.184$	1.129	1.129	1.129	1.129	1.129	1.129	1.129	1.129	1.129	
$v = (D_x - D_0)/(D_{max} - D_0)$	0	0.015	0.166	0.514	0.611	0.934	0.967	1.00	1.00	

^{*)} середнє значення *D_{max}* для розчинів № 8 і № 9 становить 1.313

Подібно до того, як це робили у разі СТ, за даними, наведеними в табл. 2, будували залежність частки зв'язаних йонів цинку (*v*) від їхньої концентрації в розчині (рис. 2, крива 2). З графіка можна приблизно визначити константу нестійкості комплексу БСА \cdot (Zn²⁺)_n як концентрацію йонів Zn²⁺, за якої ступінь зв'язування дорівнює 0.5; вона становить ~ 1.3 ммоль/л. Порівнюючи константи нестійкості комплексів CT \cdot (Zn²⁺)_n

і БСА $\cdot (Zn^{2+})_n$, можна припустити, що йони цинку переважно зв'язуються з білковим компонентом СТ.

БСА, на відміну від СТ, характеризується певною молекулярною масою, близько 69 000 Да (607 амінокислотних залишків). Це дало змогу приблизно оцінити стехіометрію комплексу, що утворюється в результаті взаємодії з йонами цинку, для чого був застосований графічний метод молярних відношень Йоу-Джонса [22]. Згідно цього підходу, було побудовано залежність оптичної густини від кількості молів Zn^{2+} , що припадає на 1 моль БСА. Отриманий графік (рис. 4) за формою співпадає з кривою 2, рис. 2, оскільки вихідні дані для його побудови отримані шляхом лінійного перетворення даних табл. 2.

Рис. 4. Залежність оптичної густини розчинів №№ 1–9 (табл. 2) від кількості молів Zn²⁺, що припадає на 1 моль БСА

Як видно (рис. 4), значення параметра $n(Zn^{2+})/n(BCA)$, при якому перетинаються лінійні екстраполяції крутої й пологої гілок кривої, знаходиться близько 800. ∐ей показник виявився надмірно великим, тому доречно припустити, що взаємодія між йонами цинку і глобулою БСА носить неспецифічний характер. При цьому, на нашу думку, у формуванні координаційних зв'язків Zn^{2+} йонами разом 3 іншими 3 функціональними групами можуть брати участь пептидні зв'язки білка.

розчину Титрування гіалуронату натрію розчином сульфату цинку. На рис. 5 наведені спектри вихідного 0.25 % розчину гіалуронату натрію, розведеного рівним об'ємом води, і того ж розчину після додавання рівного об'єму 1 % розчину сульфату цинку. Як видно, спектр практично залишається незмінним, тобто можна зробити висновок про відсутність взаємодії між цими компонентами. Максимум поглинання знаходиться в діапазоні 200-205 нм, що наближено до даних [23]. Результати досліджень взаємодії йонів цинку 3 гіалуронаном, про які повідомляється в літературі, суперечливі. Так, у роботах [3, 23]

підтверджено взаємодію в розчині йонів цинку з гіалуронатом натрію і описано будову комплексу, що утворюється; в іншій роботі [24] можливість такої взаємодії відкидається.

Дослідження взаємодії СТ з йонами *цинку методом ДРС*. Вихідне СТ (1:5) характеризується мономодальним розподілом частинок за розміром, середній діаметр становить 135 нм (рис. 6 а). При розведенні СТ (1:5) рівним об'ємом води середній діаметр частинок збільшується до 1113 нм, а їхня кількість зменшується до 1/3 від загального числа, натомість з'являється великих агрегатів з середнім фракція діаметром близько 24.9 мкм, кількість яких становить 2/3 від загального числа (рис. 6 б). Це підтверджує дані [11, 12], одержані методом ¹Н ЯМР спектроскопії, про сильний структуруючий вплив гіалуронової кислоти СТ на воду.

Після додавання до СТ (1:5) 0.5 мл 1 % розчину сульфату цинку (відповідає розчину № 3, табл. 1) картина кардинально змінюється: з'являється фракція малих частинок із середнім діаметром 20.7 нм, що можна пояснити ущільненням

макромолекулярних агрегатів внаслідок координації з йонами цинку. Одночасно в розчині спостерігаються великі агрегати з середнім діаметром 948 нм, кількість яких порівняно незначна – це видно на діаграмі розподілу часток за об'ємом (рис. 7).

Рис. 5. Спектр 0.25 % розчину гіалуронату натрію до (1) і після (2) додавання 1 % розчину сульфату цинку

Рис. 6. Розподіл частинок СТ (1:5) за кількістю до (*a*) і після (б) додавання рівного об'єму води. Діаграма (б) відображає нестабільність об'єкта

Рис. 7. Розподіл частинок СТ (1:5) за кількістю (*a*) і об'ємом (б) після додавання 0.5 мл 1 % розчину сульфату цинку

Рис. 8. Розподіл частинок СТ (1:5) за кількістю (*a*) і об'ємом (б) після додавання 2.5 мл 1 % розчину сульфату цинку

Після введення 2.5 мл 1 % розчину сульфату цинку (відповідає розчину №9, табл. 1) середній діаметр найчисельнішої фракції знову збільшується до 124 нм, об'єкт вимірювання причому дещо дестабілізується. Розподіл частинок 38 об'ємом представлений мономодальною функцією, пік якої відповідає середньому діаметру 5960 нм (рис. 8).

Дослідження взаємодії БСА з йонами цинку методом ДРС. Встановлено, що для вихідного 0.05 % розчину БСА ДРС-спектр зняти важко, тобто в ньому практично відсутні агрегати, що розсіюють світло. Проте, після додавання 0.5 мл 0.5 % розчину сульфату цинку (відповідає розчину № 3, табл. 2) спостерігається чіткий ДРС-спектр: розподіл частинок за кількістю представлений мономодальною функцією, середній діаметр частинок – імовірно комплексів білка з йонами цинку – становить 19 нм; окрім того, у незначній кількості з'являються великі агрегати з середнім діаметром 955 нм (рис. 9).

Після введення 2.5 мл 0.5 % розчину сульфату цинку (відповідає розчину № 9, табл. 2) картина дещо дестабілізується, хоча все одно чітко видно, що розмір агрегатів зростає: на розподілі за кількістю присутні два піки, які відповідають середнім діаметрам 499 нм (24.2 % від загального числа) і 1232 нм (75.8 %); розподіл за об'ємом представлений одним піком, що відповідає середньому діаметру 1832 нм (рис. 10).

Рис. 9. Розподіл частинок в 0.05 % розчині БСА за кількістю (*a*) і об'ємом (б) після додавання 0.5 мл 0.5 % розчину сульфату цинку

Рис. 10. Розподіл часток в 0.05 % розчині БСА за кількістю (*a*) і об'ємом (*б*) після додавання 2.5 мл 0.5 % розчину сульфату цинку

Нами показано, що ані розчин гіалуронату натрію, ані його суміш з розчином сульфату цинку нечутливі до методу ДРС – це узгоджується з даними УФ вимірювань про відсутність комплексоутворення в цій системі.

ВИСНОВКИ

Методом спектрофотометричного титрування встановлено, що йони Zn^{2+} у водному розчині при рН 8–9 утворюють комплекси з макромолекулярними компонентами склоподібного тіла. Константа рівноваги процесу комплексоутворення, представлена як концентрація йонів Zn^{2+} у розчині, за якій ступінь зв'язування дорівнює 50 %, становить ~ 4 ммоль/л. Для модельного білка – БСА – аналогічний процес відбувається 3 ~ 1.3 ммоль/л. константою рівноваги Взаємодію гіалуронату натрію з йонами цинку даним методом виявити не вдалось. Розмірні характеристики агрегатів. шо утворюються внаслідок взаємодії склоподібного тіла і БСА з йонами Zn²⁺, визначено методом динамічного розсіювання світла. На підставі отриманих результатів зроблено припущення, що при взаємодії зі склоподібним тілом йони цинку переважно зв'язуються з білковим компонентом, а не з гіалуронаном. Механізм виявленої взаємодії потребує додаткового вивчення.

A study on interaction between zinc(II) and macromolecular components of vitreous humor by UV/DLS methods

K.O. Stepanyuk, I.I. Gerashchenko, A.Yu. Chunikhin

Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine 17 General Naumov Str., Kyiv, 03164, Ukraine, igorgera57@ukr.net Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine 9 Leontovych Str., Kyiv, 01601, Ukraine

One of the tasks for creating of a medicinal product which contains hydrogel of vitreous humor (VH), nanosized silica and zinc compound is studying of the regularities of complex formation of hyaluronic acid and protein, as a main macromolecular components of VH, with zinc ions.

We have found that after mixing solutions of VH and zinc sulfate the growth of optical density in UV range of the spectrum is observed, apparently due to light scattering as a result of increasing quantity of macromolecular aggregates. It has been proved that this effect is not a consequence of the formation of insoluble compounds due to

changes in pH of the medium and thus can be explained by the interaction (complexation) of VH components with zinc ions.

In order to determine the regularities of complex formation, the spectrophotometric titration of VH and separately solutions of purified sodium hyaluronate and model protein – bovine serum albumin (BSA) – with zinc ions was carried out. To constant amount of VH (dilution 1:5) increasing amounts of zinc sulfate solution were added, after that UV spectrum was recorded. As it turned out, after addition of zinc sulfate in the concentrations range 2.5–5.0 mass. % the growth of optical density almost immediately becomes maximal and does not depend on the amount of titrant, which can be explained by saturation of all active centers of VH, which include carboxyl groups of hyaluronic acid and electron donor groups of protein: NH₂-groups, amide bond, thiogroups, etc. In the range 0–0.5 mass. % of zinc sulfate $(0-17.5 \text{ mmol/l of } Zn^{2+})$ there is a gradual increase in optical density, which makes it possible to calculate equilibrium parameters in the system $VH + n Zn^{2+} \leftrightarrow VH \cdot (Zn^{2+})_n$. For BSA which also demonstrated a gradual increase of optical density in UV range, in order to determine the stoichiometry of $BSA \cdot (Zn^{2+})_n$ complex the method of molar ratios was used, and it was found that there were about 800 ions of Zn^{2+} per one BSA molecule. In the case of purified sodium hyaluronate, the method of spectrophotometric titration proved to be unsuitable or complexation does not occur at all. Consequently, the interaction of VH with zinc ions is carried out mainly due to the protein component rather than hyaluronan. Dimensional characteristics of aggregates formed as a result of the interaction between VH or BSA and zinc ions were investigated by the method of dynamic light scattering (DLS).

Keywords: zinc ions, vitreous humor, hyaluronic acid, bovine serum albumin, complex formation, UV spectrum, DLS spectrum

Исследование взаимодействия цинка(II) с макромолекулярными компонентами стекловидного тела методами УФ-спектроскопии и динамического рассеяния света

Е.А. Степанюк, И.И. Геращенко, А.Ю. Чунихин

Институт химии поверхности им. А.А. Чуйко Национальной академии наук Украины ул. Генерала Наумова, 17, Киев, 03164, Украина, igorgera57@ukr.net Институт биохимии им. А.В. Палладина Национальной академии наук Украины ул. Леонтовича, 9, Киев, 01601, Украина

Одной из задач при создании лекарственного средства, содержащего гидрогель стекловидного тела (СТ), наноразмерный кремнезем и соединение цинка, является исследование закономерностей комплексообразования гиалуроновой кислоты и белка – основных макромолекулярных компонентов СТ – с ионами цинка.

Нами обнаружено, что при смешивании растворов СТ и сульфата цинка наблюдается рост оптической плотности в УФ диапазоне спектра, очевидно, за счет рассеяния света в результате увеличения числа макромолекулярных агрегатов. Доказано, что этот эффект не является следствием образования нерастворимых соединений из-за изменения pH среды и, таким образом, может быть объяснен взаимодействием (комплексообразованием) компонентов СТ с ионами цинка.

С целью изучения закономерностей комплексообразования проводили спектрофотометрическое титрование СТ и отдельно растворов очищенного гиалуроната натрия и модельного белка – бычьего сывороточного альбумина (БСА) – ионами цинка. К постоянному количеству СТ, разведенного водой 1:5, добавляли возрастающие количества раствора сульфата цинка, после чего регистрировали УФ-спектр. Как оказалось, после добавления сульфата цинка в диапазоне концентраций 2.5–5.0 масс. % прирост оптической плотности почти сразу становится максимальным и не зависит от количества титранта, что можно объяснить насыщением всех активных центров СТ, к которым относятся карбоксильные группы гиалуроновой кислоты и электронодонорные группы белка: NH_2 -группы, амидная связь, тиогруппы и т.п. В диапазоне 0–0.5 масс. % сульфата цинка (0–17.5 ммоль/л Zn^{2+}) наблюдается постепенное увеличение оптической плотности, что позволило рассчитать параметры равновесия в системе СТ + п $Zn^{2+} \leftrightarrow CT \cdot (Zn^{2+})_n$. Для БСА, который также демонстрировал постепенное увеличение оптической плотности в УФ диапазоне, с целью определения стехиометрии комплекса БСА $\cdot (Zn^{2+})_n$ был использован метод молярных отношений, при этом установлено, что на одну молекулу БСА приходится около 800 ионов Zn^{2+} . В случае очищенного

гиалуроната натрия метод спектрофотометрического титрования оказался непригодным или комплексообразование вообще не происходит. Таким образом, взаимодействие СТ с ионами цинка осуществляется преимущественно за счет белкового компонента, а не гиалуронана. Размерные характеристики агрегатов, образующихся в результате взаимодействия СТ и БСА с ионами цинка, исследованы методом динамического рассеяния света (ДРС).

Ключевые слова: ионы цинка, стекловидное тело, гиалуроновая кислота, бычий сывороточный альбумин, комплексообразование, УФ-спектр, ДРС-спектр

ЛІТЕРАТУРА

- 1. *Біляєва О.О., Кароль І.В.* Гнійно-запальні захворювання м'яких тканин в структурі хірургічної патології // Клінічна хірургія. 2016. № 8. С. 5–6.
- 2. Дігтяр І.І. Комплексне лікування запально-гнійних уражень м'яких тканин у хворих похилого та старечого віку (клініко-експериментальне дослідження): автореф. дис. ... канд. мед. наук. 14.01.03. / Українська медична стоматологічна академія. Полтава, 2009. 20 с.
- 3. Nagy L., Yamashita S., Yamaguchi T. et al. The local structures of Cu(II) and Zn(II) complexes of hyaluronate // J. Inorg. Biochem. 1998. V. 72, N 1. P. 49–55.
- Barbucci R., Magnani A., Lamponi S. et al. Cu(II) and Zn(II) complexes with hyaluronic acid and its sulphated derivative. Effect on the motility of vascular endothelial cells // J. Inorg. Biochem. – 2000. – V. 81, N 4. – P. 229–237.
- Volpi N., Schiller J., Stern R. et al. Role, metabolism, chemical modifications and applications of hyaluronan // Curr. Med. Chem. – 2009. – V. 16, N 14. – P. 1718–1745.
- 6. *Fallacara A., Baldini E., Manfredini S. et al.* Hyaluronic acid in the third millennium // Polymers (Basel). 2018. V. 10, N 7. P. 1–36.
- 7. Канюков В.Н., Стадников А.А., Трубина О.М. и др. Гистоэквивалент биопластического материала в офтальмологии: Монография. Оренбург, 2014. С. 67–94.
- 8. Meyer K., Palmer J.W. The polysaccharide of the vitreous humor // J. Biol. Chem. 1934. V. 107. P. 629-634.
- Bishop P.N. Structural macromolecules and supramolecular organization of the vitreous gel // Prog. Retin. Eye Res. - 2000. - V. 19, N 3. - P. 323-344.
- 10. *Sharif-Kashani P., Hubschman J.P., Sassoon D. et al.* Rheology of the vitreous gel: effects of macromolecule organization on the viscoelastic properties // J. Biomech. 2011. V. 44, N 3. P. 419–423.
- 11. *Геращенко І.І., Маркіна А.І., Горчев В.Ф.* Дослідження макромолекулярної структури препарату «Склоподібне тіло» методами інфрачервоної та лазерної кореляційної спектроскопії // Медична хімія. 2013. № 2. С. 5–9.
- 12. *Геращенко І.І., Маркіна А.І., Туров В.В.* Структура зв'язаної води в склоподібному тілі за даними ¹Н ЯМР-спектроскопії // Медична хімія. 2011. № 2. С. 102–106.
- 13. *Маркіна А.І.* Взаємодія Si- та Al- вмісних ентеросорбентів з біогідрогелем полісахаридної природи: автореф. дис. ... канд. хім. наук: 01.04.18. / Інститут хімії поверхні ім. О.О. Чуйка НАНУ. Київ, 2017. 22 с.
- 14. Torvard C. Laurent. Hyaluronan research in Uppsala // Ups. J. Med. Sci. 2007. V. 112, N 2. P. 123-142.
- 15. Біловол О.М., Кравчун П.Г., Бабаджан В.Д. та ін. Клінічна імунологія та алергологія. Харків: Гриф, 2011. С. 145–147.
- 16. Ayad S., Weiss J.B. A new look at vitreous-humor collagen // Biochem. J. 1984. V. 218, N 3. P. 835-840.
- 17. Лурье Ю.Ю. Аналитическая химия промышленных сточных вод. Москва: Химия, 1984. 448 с.
- 18. Henk G. Merkus. Particle Size Measurements. Fundamentals, Practice, Quality. NY: Springer, 2009. 533 p.
- Scott E. McNeil. Characterization of Nanoparticles Intended for Drug Delivery. NY: Humana Press, 2011. 283 p.
- 20. Ландсберг Г.С. Оптика. Москва: ФИЗМАТЛИТ, 2003. С. 529–530.
- 21. *Крисс Е.Е., Волченскова И.И., Григорьева А.С., Яцимирский К.Б., Бударин Л.И.* Координационные соединения металлов в медицине. Киев: Наукова думка, 1986. 216 с.
- 22. Юинг Г. Инструментальные методы химического анализа. Москва: Мир, 1989. 608 с.

- 23. Burger K., Illés J., Gyurcsik B. et al. Metal ion coordination of macromolecular bioligands: formation of zinc(II) complex of hyaluronic acid // Carbohydr. Res. 2001. V. 332, N 2. P. 197–207.
- 24. *Parrish R.F., Fair W.R.* Selective binding of zinc ions to heparin rather than to other glycosaminoglycans // Biochem. J. 1981. V. 193, N 2. P. 407–410.

REFERENCES

- 1. Bilyayeva O.O., Karol I.V. Purulent inflammatory diseases of soft tissues in the structure of surgical pathology. *Klinichna khirurhiya*. 2016. **8**: 5. [in Ukrainian].
- 2. Digtiar I.I. Ph.D. (Med.) Thesis. (Poltava, 2009). [in Ukrainian].
- 3. Nagy L., Yamashita S., Yamaguchi T., Sipos P., Wakita H., Nomura M. The local structures of Cu(II) and Zn(II) complexes of hyaluronate. *J. Inorg. Biochem.* 1998. **72**(1): 49.
- 4. Barbucci R., Magnani A., Lamponi S., Mitola S., Ziche M., Morbidelli L., Bussolino F. Cu(II) and Zn(II) complexes with hyaluronic acid and its sulphated derivative. Effect on the motility of vascular endothelial cells. *J. Inorg. Biochem.* 2000. **81**(4): 229.
- 5. Volpi N., Schiller J., Stern R., Soltes L. Role, metabolism, chemical modifications and applications of hyaluronan. *Curr. Med. Chem.* 2009. 16(14): 1718.
- 6. Fallacara A., Baldini E., Manfredini S., Vertuani S. Hyaluronic Acid in the Third Millennium. *Polymers* (*Basel*). 2018. **10**(7): 1.
- 7. Kanyukov V.N., Stadnikov A.A., Trubina O.M., Rakhmatullin R.R., Yakhina O.M. *Histoequivalent of bioplastic material in ophthalmology*. (Orenburg, 2014). [in Russian].
- 8. Meyer K., Palmer J.W. The polysaccharide of the vitreous humor. J. Biol. Chem. 1934. 107: 629.
- 9. Bishop P.N. Structural macromolecules and supramolecular organization of the vitreous gel. *Prog. Retin. Eye Res.* 2000. **19**(3): 323.
- 10. Sharif-Kashani P., Hubschman J.P., Sassoon D., Kavehpour H.P. Rheology of the vitreous gel: effects of macromolecule organization on the viscoelastic properties. *J. Biomech.* 2011. **44**(3): 419.
- 11. Gerashchenko I.I, Markina A.I., Gorchev V.F. Study of macromolecular structure of vitreous humor by IR- and laser correlation spectroscopy methods. *Medychna khimiya*. 2013. **2**: 5. [in Ukrainian].
- 12. Gerashchenko I.I., Markina A.I., Turov V.V. Structure of bound water in vitreous body by ¹H NMR spectroscopy. *Medychna khimiya*. 2011. **2**: 102. [in Ukrainian].
- 13. Markina A.I. Ph.D. (Chem.) Thesis. (Kyiv, 2017). [in Ukrainian].
- 14. Torvard C. Laurent. Hyaluronan research in Uppsala. Ups. J. Med. Sci. 2007. 112(2): 123.
- 15. Bilovol O.M., Kravchun P.H., Babadjan V.D. *Clinical immunology and allergology*. (Kharkiv: Grif, 2011). [in Russian].
- 16. Ayad S., Weiss J.B. A new look at vitreous-humor collagen. Biochem. J. 1984. 218(3): 835.
- 17. Lurie Yu. Yu. Analytical chemistry of industrial wastewater. (Moscow: Khimiya, 1984). [in Russian].
- 18. Henk G. Merkus. Particle Size Measurements. Fundamentals, Practice, Quality. (NY: Springer, 2009).
- 19. Scott E. McNeil. Characterization of Nanoparticles Intended for Drug Delivery. (NY: Humana Press, 2011).
- 20. Landsberg G.S. Optics. (Moscow: FIZMATLIT, 2003). [in Russian].
- 21. Kriss E.E., Volchenskova I.I., Grigorieva A.S., Yatsimirsky K.B., Budarin L.I. *Coordination metal compounds in medicine*. (Kiev: Naukova Dumka, 1986). [in Russian].
- 22. Galen W. Ewing. Instrumental Methods of Chemical Analysis, 5th ed. (NY: McGraw-Hill, 1985).
- Burger K., Illes J., Gyurcsik B., Gazdag M., Forrai E., Dekany I., Mihalyfi K. Metal ion coordination of macromolecular bioligands: formation of zinc(II) complex of hyaluronic acid. *Carbohydr. Res.* 2001. 332(2): 197.
- 24. Parrish R.F., Fair W.R. Selective binding of zinc ions to heparin rather than to other glycosaminoglycans. *Biochem. J.* 1981. **193**(2): 407.

Надійшла 29.03.2019, прийнята 21.05.2019