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The phenomenon of the ratchet effect provides the motion a large number of molecular machines, existing in
nature and artificially created nanomechanisms, capable to initiate directed diffusion movement along periodic
structures. Two key factors, necessary for the ratchet effect occurrence, are the presence of asymmetry in the system
and the organization of the non-equilibrium fluctuations process. Asymmetry can be created directly by the
stationary potential form, in the field of which unidirectional motion is organized. Double-sine (smooth) and
sawtooth (piecewise-linear) potential profile dependences are encountered most frequently when designing models.
The source of such dependence can be a chain of collinearly located dipoles on the surface of a solid. The purpose of
this work was to study the influence on the ratchet effect of changing the model potential class from smooth to
piecewise linear. For this purpose, two methods of approximation of the double sinusoidal potential by a sawtooth
were considered. The first, simple, consists in connecting the extremum points with straight-line segments,
preserving the height of the potential barrier and the coordinates of the extrema. The second, the least squares
method (LSM), reproduces the slopes of the smooth potential as closely as possible. A model of a stochastic
Brownian motor with small fluctuations of the potential energy by a harmonic signal was chosen for the comparative
analysis. This model has no limitations in the ranges of the environment temperature and fluctuation frequency
parameters, so the ratchet effect can be studied in all operation modes of the motor. It is shown that at sufficiently
high temperatures for any asymmetry of potentials, approximation by the simple method gives better results, and at
high frequencies — the LSM method. An algorithm for determining the best approximation method in the ranges of
parameters that generate the largest flux values is proposed. It has been shown that for single-well double-sine
potentials the approximate LSM-potential gives identical results of temperature-frequency dependences. Contour
graphs of relative flux values were plotted, demonstrating parameters regions of the greatest identity (stability) of
the ratchet effect and the region of the greatest difference.

Keywords: dipole chain, orientation-structured system on a surface, controlled diffusion transport, near-surface
mass transfer, Brownian motors, ratchet effect, potential fluctuations

INTRODUCTION are a class of nanoscale mechanisms that use the
thermal noise of the environment as one of the
useful (necessary) components in generating
their own motion [2]. The mechanism of
Brownian motor operation is based on the idea
of rectification the already existing chaotic
Brownian motion of a nanoparticle with the help
of spatial asymmetry created in the motor's
surroundings and the unbiased fluctuations
imposing into the system. These fluctuations, on
the one hand, are a source of energy (“fuel”) for
the motor and, at the same time, a factor that
disrupts the thermodynamic equilibrium state,
due to which the occurrence of directional
motion (occurrence of the ratchet effect)

Today, the task of modeling, designing and
developing scientific theories of nanomechanism
motion is relevant and promising in many fields
of scientific research [1-4]. Nanoscale devices,
regardless of their structure and functions, are
immersed in a liquid or gaseous medium and
experience thermal motion of molecules of the
environment. The interaction between the
particles and the medium is quite comparable in
magnitude to other interactions acting on the
nanodevice. The presence of such an interaction
fundamentally distinguishes nanoscale motors
from macroscopic devices [1]. Brownian motors
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becomes possible [1-4]. The mechanism of
Brownian motor operation explains the motion
of many naturally occurring molecular devices
that carry out intracellular transport (for
example, the motion of kinesin and dynein along
microtubules [6, 7]), perform complex collective
processes in living organisms (for example,
myosin and actin, which are responsible for
muscle contraction) [2, 3,8], as well as less
obvious processes related to the generation of
motion: proton  ATP synthase, the
implementation of active membrane transport
through ion channels, rotation of molecular
rotors, etc. [5-9]. In addition to biological ones,
there are many artificially created nano-
mechanisms built on the phenomenon of the
ratchet effect: particles moving in a liquid or
gaseous solutions in the field of action of a
periodic asymmetric potential [10, 11], the
motion of electrons in semiconductors [12],
devices for particle separation [13-15], transport
of nano-cargoes similar to protein motors along
periodic fibers [16-18], manipulation of charged
membrane components, proteins and lipids, in a
structured lipid bilayer [19, 20], creation of
various molecular rotors near surfaces [21-24]
etc.

In Chuiko Institute of Surface Chemistry of
the National Academy of Sciences of Ukraine
since 2003, fundamental research in the field of
Brownian motor theory and its application to
mass transfer processes near the surface of a
solid body is carried out. Thus, a number of
models were proposed demonstrating the ratchet
effect occurrence near the surface. It was
analytically proven that Brownian particles that
cyclically gain and lose electric charge (on-off
model [1]) can move unidirectionally along
ordered dipole chains on the surface of a solid
[25, 26]. It was shown that charged particles will
move unidirectionally under the action of an
externally applied alternating electric field,
which with a certain frequency brings the
particle closer and further away from the surface
and changes its potential energy [27]. It was
theoretically investigated that resonant laser
irradiation of a particle with a variable dipole
moment initiates the directional motion of this
particle in a spatially periodic potential (the
concept of a photomotor). It was analytically
demonstrated that the sorbed polar molecule in
the potential of hindered rotation moves around
unidirectionally under the action of an
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alternating electric field (molecular rotor model)
[27], etc.

So, the ratchet effect is the mechanism by
which the Brownian motor works, as it initiates a
directed, not a chaotic, motion. Two key factors
necessary for the ratchet effect occurrence are
the presence of asymmetry in the system and the
organization of the process of non-equilibrium
fluctuations. If the asymmetry is created directly
by the shape of the stationary potential profile,
then we are talking about such systems as
ratchets [1], and then the properties of the
surface will be decisive in the generation of
fluxes. By manipulating the composition and
structure of the surface, we can create such a
potential profile that will generate a flux of
nanoparticles of a given magnitude and
direction. The presence of a structured substrate,
which is a source of spatial periodicity and
asymmetry, provides the possibility of
implementing at least two concepts of Brownian
motors near the surface: initiating the directed
diffusion motion of Brownian particles along the
structured chains of adsorbed molecules of the
surface layer [25,26] or the unidirectional
rotation of an adsorbed polar molecule, which is
in the field of action of the potential of
neighboring atoms [26, 27]. That is, combining
the theory of Brownian motors with surface

physics and chemistry is a promising
interdisciplinary ~ direction  that  allows
constructing  models  of  non-biological

nanodevices, which, in turn, can be used to
create controlled diffusion transport in near-
surface layers or in various studies of surface
properties by molecular rotors [26, 27].

In general, model potential profiles, in the
field of which directed diffusion motion is
generated, are divided into two large classes:
smooth and piecewise linear (that is, those that
contain areas of large gradients of potential
energy change). These classes are headed by two
“archetypal” potential profiles [2], the most
characteristic and most often used — double-sine
[2, 28] and sawtooth [2, 3] dependences. Many
well-known models have been formulated and
calculated for them, and analytical solutions in
various approximations have been found [1-4].
Despite the fact that these potentials are both
single-well, asymmetric and visually similar in
shape, the resulting ratchet effect can differ
significantly in its properties, such as, for
example, the possibility of temperature-
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frequency control of the motion direction [29].
In addition, since the sawtooth potential is much
easier to parameterize and often analytical
solutions are easier to obtain precisely for it, it
may be necessary to replace the model potential
[25, 26] from smooth to sawtooth within the
framework of one model to obtain an analytical
solution. Peculiarities of the ratchet effect
depending on the potential profile shape were
studied only within the framework of particular
approximations (for example, comparative
studies of high-frequency different classes
ratches [30, 31]). However, when designing
artificial Brownian motors operating in certain
frequency and temperature regimes (for
example, devices for particle separation [1-5]),
in order to select a specific periodic substrate,
knowledge about the influence of the stationary
potential profile shape on the resulting flux over
the entire range of control parameters is
required. So, the purpose of this work was to
study the influence on the ratchet effect of
changing the model potential class from smooth
to piecewise linear. The approximation of small
fluctuations is best suited for this task, because it
is based on a “leading” stationary potential, the
shape of which changes weakly during
fluctuations. If the perturbing factor is chosen to
be the same as the other control parameters of the
system, it is possible to directly highlight the
influence of the shape of our model “master
potential” on the magnitude and direction of the
resulting flux, which is intended to be done in this
work.  Also, in order to formulate
recommendations for obtaining the most similar
ratchet effect when replacing potentials within the
framework of one problem, it is advisable to
consider different types of approximation and
their results in the full ranges of control
parameters, which will allow to identify areas of
parameters that ensure the identity and maximum
divergence of the generated fluxes, as well as
clarifying the physical factors of such behavior.

In the next section, a description of the
motion dynamics of a Brownian particle in an
alternating potential will be considered and a
numerical procedure for calculating the main
characteristics of the ratchet effect in the
approximation of small fluctuations will be
given. Then the potential of a dipole chain as a
component of a structured surface will be
reviewed, and options for selecting a simple
model potential will be discussed. After that, the
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methods of approximating smooth potentials by
sawtooth potentials will be described, the
obtained calculation results depending on
various model parameters will be considered and
analyzed, and conclusions will be formulated.

RATCHET EFFECT CALCULATION IN THE
FRAME OF SMALL FLUCTUATION
APPROXIMATION

Typically, the ratchet effect is described by
considering the one-dimensional motion of a
Brownian particle in an external force field
characterized by a potential energy U(x, t) that
depends on the coordinate x and time t.
Dynamics of studied particle-motor is described
by the Smoluchowski equation for the
distribution  functions p(x, t), defining the
location of the particle in a time moment t
[3, 29, 32-34]:

0 0
ap(x,t)+&\](x,t)_0, 1)

J(x,t) =-De MY 9 g p(xt). (2
OX

Equation (2) sets the probability flux J(x, t),

D = (B¢)* - the diffusion coefficient and { — the

friction coefficient.

The approximation of small potential energy
fluctuations, developed by the team of authors
[32], is used, first of all, to describe a wide class
of artificially created molecular machines. It
assumes that the potential profile U(x, t) has an
additive-multiplicative form [34, 35]:

U (x,t) =u(x) + o(t)w(x), (3)

in which the first term u(x) describes the
stationary (undisturbed) profile, and the second
term  o(t)w(x) describes the fluctuating
component (disturbance). Small fluctuations of
the potential energy correspond to the case when
W(X) << u(x). At the same time, it is assumed that
lo(tw(X)| / ksT << 1, and the ratio |u(X)|/ keT is
considered arbitrary.

We will use a harmonic signal w(x) with
amplitude w, spatial period of the system L and
phase shift Ao as a small fluctuating component
of the potential U(x, t) [34, 35], that is easy to

realize  experimentally for non-biological
ratchets [36, 37]:
w(x) =wcos[2z(x/L—-4,)]. @)
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The function o(t) is responsible for the time
dependence of the potential energy U(x, t). Most
often, fluctuations are introduced into the system
by stochastic dichotomous process, i.e. one that
reflects the course of random homogeneous
phenomena characterized by average values.
Stochastic (random) fluctuations are typical for
protein motors: due to the cyclic course of the
chemical reaction of ATP hydrolysis,
conformational changes occur in the motor
protein, which causes fluctuations in the
effective potential profile [3,6, 7, 11], or for
artificial nanomechanisms in which a random
number generator or the course of chemical
reactions is used to switch states [38].

Let us assume that a symmetrical
dichotomous process is implemented in our
system, in which o(t) takes two values +1 or -1
and alternating with a given frequency of
transitions y. That is, with this type of
fluctuations, the motor particle has potential
energy (3) in the form U(x, t) = u(x) = w(x), and
switching between two states (u(x) +w(x)) and
(u(x) —w(x)) occurs randomly with an average
frequency y.

The approximation of small fluctuations [34]
makes it possible to develop a numerical
procedure for finding the main characteristic of
the Brownian motor - the constant flux of

particles  J =(J(x,t)), using the Green’s
function method [34, 35]. For this purpose, all
periodic components of the potential energy u(x),

w(x) and functions of the equilibrium
distributions in the stationary potential u(x)

L
p(O)(X):e-ﬂu(x)/ JO dxe ™™ and g(x) = ™ / J'OdeeﬂU(X)
are represented in the form of Fourier series
(f0=3 fe"" (where ko=2mp /L,

p=0,+1,£2,...; f(x) — each of these functions),
and the procedure consists in inverting the
matrix, and finding Green’s function Fourier
components of the Spy and further double
summation to find the flux value J [29]:

J ==i(zBDW)’ Y K,S,, [ d.,,Z5 +0.,,Z5 ],
pp’

26 =g o0 _ pO) |
1
2
2| (DK +T)8,, + BDK K, o, |S = 0w
p
®)

where T'=2y. The desired velocity of the
Brownian motor will be equal to (V) = LJ.

We note that the described procedure
does not specify the form u(x) of the stationary
potential, but only the perturbing component (4).
In the subsequent sections of the article, based
on system (5), numerical calculations of the flux
will be carried out to juxtapose the contributions
of the two stationary profiles that we are
comparing.

THE POTENTIAL OF A DIPOLE CHAIN

It is known that an orientationally structured
system of adsorbed polar molecules can form on
the surface of a solid under certain conditions:
the ground state of two-dimensional dipole
systems  corresponds to  ferroelectric or
antiferroelectric structures (dependent on the
type of two-dimensional lattice of the adsorbate),
consisting of chains with collinear orientations
of dipole moments along the chain axis [25].
Such a dipole chain with a period L creates an
electrostatic field (Fig. 1), in which a charged
particle g has a potential energy V.(x, z), which
can be written in the following form [25]:

V,(x,2) =V0§:hK0 (Z—Eh zjsin(z—ﬂh xj,
— L L

2qu
Vv, =22, 6
Iy (6)

where 4 is the dipole moment of the adsorbed
molecule, & is the electric constant, and Ko(x) is
the Macdonald function. The dependence of the
potential energy on the spatial coordinates (6) is
obviously periodic along the axis with a period L
(like a dipole chain) and rapidly decreases with
distance from the chain: the amplitude’s value
decreases to O when the ratio z/L tends to 1
[25]. In addition to the amplitude, periodic
dependences are characterized by an asymmetry
parameter - the ratio of the distance between
adjacent extrema to the spatial period, and if this
parameter differs from 0.5, then it is an
asymmetric dependence [3, 25]. For the potential
energy V(X z), the asymmetry parameter also
changes (decreases) when moving away from the
chain and goes to 0.5 as the ratio z/ L tends to 1
[25].
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Fig. 1.

V.(x2)Lqu

Spatial dependence of the potential energy of a charged particle g near the dipole chain, and (in the upper

left tab) its dependence V(x) for fixed values z / L (labeled on the curves). During calculations, series (6)

was limited to h = 20

If the external alternating electric field for
some time has only a tangential component that
keeps the particle-motor at a certain fixed
distance z / L from the chain, then for this period
the parameters of the potential energy are
constant, and it will depend only on the
coordinate X: V(X) = V(X, Zconst). The tab of Fig. 1
shows the dependences of the potential energy
V(x)/ Vo for three fixed values of the ratio
z/L=0.18,0.22,0.28. That is, the shape of the
potential energy spatial dependence of the
interaction between the charged particle-motor
and the dipole chain, as an example of a real
system, will significantly depend on the distance
to the chain at which the motion will occur.
Thus, in work [25] a fixed value z/ L = 0.28 was
chosen (the curve with the smallest amplitude in
the tab of Fig. 1), and for it the approximation by
a double-sine dependence (restriction of the
series (6) to two terms) is quite sufficient:

V(X) =U,[sin(2zx /L) +%sin(47zx/ L],

2
u, = LL‘Z‘ K, (1.76). )

0

The double-sine potential first appeared in
the theory of Brownian engines in this form [28],
and is now encountered most often [3]. But when
approaching the dipole chain with increasing
amplitude and asymmetry, it is obvious that
function (7) will no longer approximate the
dependence V(x), and even if it remains in the
class of smooth potentials, the coefficient at the
second harmonic must be variable. For small
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z/L ones (see the curve with the largest
amplitude in the tab of Fig. 1), it is obvious that
approximation by a saw-like function will be
more successful. In the next section, using the
example of a double-sine dependence with
variable  coefficients, options  for its
approximation by a sawtooth dependence will be
considered.

METHODS OF APPROXIMATION OF A
DOUBLE-SINE POTENTIAL BY A
SAWTOOTH

Setting the double-sine potential. The
potential energy of a particle in the form of a
double-sine potential (or biharmonic potential) is
generally given by the formula:

ug, (X) = Asin(2zx/ L)+ A, sin(4zx /L), (8)

that is, it represents the sum of two sinusoids of
different periods L and L/2 with independent
amplitudes, respectively, A; and A; having the
dimension of energy. If we enter the
dimensionless coefficient a = A,/ A, then the
function (8) will take the form:

ug, (X) = A [sin(2zx/ L) +asin(4zx/L)].  (9)

The  double-sine  potential is  an
antisymmetric periodic function with a period L,
which has centers of symmetry at the zero points

of the function Ln/2, neZ (see Fig.2a), is

single-well at & < 0.5 and double-well at & > 0.5.
This function is spatially asymmetric, and its
coefficient of asymmetry is usually determined
by the ratio of the distance between the nearest
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minimum and maximum to the spatial period by
analogy with the sawtooth potential [3]:

Ky = (Xmax - Xmin)/ L. (10)

The use of the potential in form (8) or (9) is
convenient in the case a<1 that, i.e., the
contribution of the second harmonic with a half
period is small, and it practically does not
increase the amplitude of the potential. For
sufficiently large values, it is more convenient to
use the potential with additional normalization,
which allows one to separate the asymmetry of
the potential and its amplitude and make them
independent parameters [29]:

l]sin (X) = uo f (X),

f(x)=C, (a)[sin(2zx/ L) +asin(4zx/L)],  (11)

where the coefficient Cy(a) is calculated by the
formulas:

C. () =[26sin(2zx . [ L) +asin(@dzx_ /L))",

X, =arccos[(2y/8+ (4a?)* —a)/8]/2z. (12)

The normalization coefficient is calculated
for each value a and is equal to doubled value of
the expression of formula (10) in square brackets
at the maximum point xmax (see Fig. 2 a). That is,
for any value «, the dimensionless expression
f(x) has a full unit amplitude.

Setting the sawtooth potential. The sawtooth
potential is a periodic piecewise linear function,
for its specification the spatial period is divided

into several (two or three) intervals, on which the
equations of straight lines are specified. Most
often, the sawtooth potential is given by two
segments in the following form [26]:

x/1, 0<x<I,

u,(x) =u =X= (13)
(L=x)/(L=1), I<x<L,

with this definition us>0, it is periodic

(us(x + nL) = us(x), e Z) and does not belong to

the classes of symmetric or antisymmetric
functions. The characteristics of the potential are
very easy to determine: the amplitude (energy
characteristic) is equal to the coefficient u, and
the coefficient of asymmetry is equal to
s=1/L.

In tasks for which it is necessary to carry out
an approximation by a sawtooth potential, it is
more convenient to specify it in the form of an

antisymmetric function (see Fig.2a, large-
dashed dependence):
XI%, 0<X<X,,
l]s(x) :VO XO XO
(L/2=x)/(L/2=X,), %, <x<L/2.
(14)

With this method of setting, the function #s(x)
can take both positive and negative values; xo —
maximum coordinate, vo — potential amplitude. It
is obvious that dependences (13) and (14)
correspond to one and the same function shifted
along the axis x by xo, and along the energy axis
by vo, that is | = 2xg, U = 2w, and s = 2Xo/L.
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0,05 F Alxgvo)ug
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0,03
0,02 PP

0,01 e
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Fig. 2. a - the potential of a double-sine (11) (solid line) and its variants of approximation by a sawtooth potential;
dependences of b — the asymmetry coefficients and ¢ — the value of the quadratic deviations (15) on the
parameter o for the simple approximation method (dotted lines) and the LSM method (dashed lines)
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Since only the derivative of the potential
energy is included in the Smolukhovsky equation,
the position of the potential function along the
energy axis is not important. A certain problem is
the shift along the axis, which affects the phase
shift between the stationary and fluctuating
components of the potential, so it must be taken
into account in the calculations accordingly.

Methods of approximation. Usually, works
(see, for example, [25, 26]) use a simple method
of transition between defined potentials, which is
the connection of maxima and minima of the
double-sine potential with segments (see
Fig. 2 a, dotted lines). A sawtooth potential is
formed, in which all characteristics completely
match with the characteristics of the double-sine
potential: the coordinates of the extrema Xo = Xmax
and the asymmetry coefficient xs=xn If we
approximate the potential given by expression
(9), then the resulting amplitude will be equal to
A, if we use additional normalization and the
original dependence (11), then the amplitude of
the approximation potential will be equal to uo.

Another approximation option is the least
squares method (LSM), which was discussed in
detail in our article [35]. It consists in finding the
minimum of the integral factor of quadratic
deviations between the double-sine potential and
the sawtooth dependence function in the entry
(14):

0

w v, 2
)= dx{usm(x)—x—x} +

L/2

2
10— /o
+'[dx{usm(x) L/2_)(0(L/2 x)}, (15)

X

which allows numerical methods to obtain the
values and coordinates of the maximum X, and
vo. According to the LSM method, the
parameters of the sawtooth potential are
calculated in such a way that the “distances”
between the functions at each point are minimal,
and the forms of dependence are maximally
similar, as a result, we obtain a potential with a
different position of the maximum, amplitude
and, accordingly, the asymmetry parameter
(Fig. 2 aand 2 b, dashed lines).

Table 1 shows the parameters of sawtooth
potentials formed by two types of approximation,
simple and LSM, calculated for some fixed values
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of the parameter a: the position of the maximum
Xmax and the asymmetry coefficient xn for the
simple method (which match with the
characteristics of the double-sine potential); and
LSM approximation parameters: the position of the
maximum X, the asymmetry coefficient x, and the
amplitude’s ratio of the double-sine and
approximating potentials vo / Ay for the case of the
initial dependence in the form (9) and vo/ Ug — in
the form (11).

Table 1 shows the data corresponding to
parameter values « from 1/8 to 3, but since the
double-sine potential remains single-well only
when «a<0.5 the applicability of the
approximation for large values o is under the
guestion. In addition, the total quadratic
deviations have the smallest values in the range
0<a<0.5 (see Fig.2c), and with further «
growth steadily increase, which indicates an
increasingly large discrepancy between the
original and approximation function. In this
regard, we carried out most of the calculations
for the range of a < 1.

It is worth adding that the considered types
of approximation will be suitable and similarly
implemented for any smooth potential: a simple
method will consist in connecting the largest
potential barrier and the deepest well with
segments, and the LSM method will consist in
solving the resulting system of equations when
searching for the minimum value of expression
(15) when replacing the potential #sin(x) with
another investigated.

CALCULATION RESULTS

For a comparative analysis, the numerical
procedure (5) was applied consistently to three
stationary potentials: a double-sine with a
normalization coefficient (11), and two
approximate saw-tooth potentials (14) with
different parameters obtained by the simple and
LSM methods. The corresponding Fourier
components are given by the following
expressions:

- u,C, () r_. .
Ui p :"T()[mépvﬂilaép’ﬂ : (16)
. e—Zﬁith _1
usim ep — u y (17)
plep 047[2p2Kh(1_Kh)
27k, p
N g s —1
Ussmp =Vo (18)

47 p21<S (1-x,) '
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and the Fourier components of the fluctuation

function w(x) have the form:

W

p

- g[ez”%dp’_l +e 27 5p'1] .

(19)

Table 1. The most used values of the parameter « and the corresponding characteristics of the sawtooth potential
for two types of approximation
Simple method LSM method
a Cn(a) .
Form of potential
Xmax Kh Xo Ks vo/ A1 vo/ Uo profiles
1/8 0.486 0.234 0.468 0.201 0.402 1.228 1.193 /\/
1/6 0.476 0.208 0.416 0.188 0.375 1.236 1.178 /\/
1/4 0.454 0.190 0.380 0.166 0.331 1.258 1.143 /\/
1/3 0430  0.180 0.360 0.149 0.297 1.286 1.107 /\/
1/2 0.385 0.166 0.332 0.126 0.251 1.349 1.038
3/4 0.328 0.155 0.310 0.105 0.209 1.456 0.955
1 0.284 0.149 0.298 0.092 0.184 1.569 0.892
15 0.223 0.142 0.284 0.078 0.155 1.806 0.805
2 0.183 0.138 0.276 0.070 0.139 2.048 0.748
3 0.134 0.134 0.268 0.061 0.122 2.537 0.681

In addition to the parameter o corresponding
to the shape and asymmetry of the potential
profiles, and the phase shift between the
stationary and fluctuating components Ao, the
model system in which the ratchet effect is
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observed is characterized by the following
external parameters: the temperature of the
environment, which we introduce as a
dimensionless parameter Suo — the ratio of the
potential barrier’s height to thermal energy, and
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the frequency of potential fluctuations y is a

dimensionless parameter yL2/D (L?/D -
nanoparticle diffusion time over the distance of
the spatial period) [26]. The influence of the
parameter Ao was studied in detail in [29]: it
determines the cyclic dependence of the
magnitude and sign of the flux, which is the
same for two types of potentials, so its variation
is outside the scope of this study. However, even
excluding /o, it still remains to investigate the
dependence of the flux J on three parameters (o,
Buo, yL? | D), which, with simultaneous imaging,
involves the construction of a four-dimensional
surface. For a detailed analysis of the results,
consider a series of cross-sectional drawings
with different combinations of fixed parameters.

When analyzing the results, the behavior of
the ratchet effect depending on two parameters -
temperature and frequency - is of primary
interest. Fig. 3 shows the surfaces of flux values
J calculated for the double-sine potential with
a=1/4 with the corresponding potential
approximated by the LSM method. Both surfaces
show a non-monotonic dependence on both
parameters (which is typical for ratchets
[1-4, 26]), and the location of the maxima of the
surfaces is close, but with a certain shift. The
essential difference lies in the amplitude of the
effect: the sawtooth stationary component gives
a much larger flux in the region of the maximum
(Fig. 3 b).

a

Fig. 3. The nanoparticle flux values J surface in units Jo = (8Dw?) / (uoL?) depending on temperature Buo and
frequency yL? /D parameters in the model with stationary double-sine (a) and approximated sawtooth
potential by the LSM method (b). Calculations were carried out with a fixed value of « = 1/4 and phase shift

A0 =0.25

In the next three figures, we will study the
behavior of the flux J depending on various
model parameters for the entire set of studied
forms of the potential energies. The solid lines
correspond to the values of the flux calculated
for the double-sine dependence, the dotted lines
to the approximation by the simple method, and
the dashed lines — by the LSM method.

Fig. 4 shows the dependence of the flux
value in units  Jo=(BDw?) [ (UWlL? on
dimensionless parameters puo and yL?/D in
pairs for three values of the parameter « : 1/8 and
1/4 (corresponding to the single-well type of a
double-sine potential) and 3/4 (double-well
potential). Temperature dependences (left
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column of the graphs) are plotted at fixed
yL?/ D =50, and frequency dependences (right
column) at fixed puo=2 (gray curves) and
Puo =6 (black curves).

All shown figures, in fact, represent sections
of surfaces of flux values in variables (fuo,
yL? | D), similar to those shown in Fig. 3, planes
parallel to the axes. In the central regions of the
graphs of temperature dependences in
Fig. 4 a, c, e of the flux values, corresponding to
the simple and LSM methods, compete with
each other, so it is impossible to determine the
most  appropriate  approximation  method.
Nevertheless, it can be found out for a fixed
value of fuo, based on its position relative to the
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maximum of the flux dependence curve on the
temperature parameter: deviating from the
maximum into the high-temperature region (left
side of the graph), the fluxes closest in value are
given by the simple method, and when moving
to the right from a certain value of Suo, different
for different o, the LSM method shows a better
correspondence. Depending on the frequency
parameter (the three right graphs of
Fig. 4 b, d, f), the location of the curves for
different methods almost does not change, so the
temperature  dependence is sufficient to
determine the optimal approximation method.
The fact is also important that in the high-
frequency region (right wing of Fig. 4 b, d, f) for
all a values, the LSM approximation method
shows better correspondence.

02
a=1/8
0.15 |

01 F  j ey

0.05 | /7

The study of the influence of the factor o
that determines the shape and asymmetry of the
potentials is presented in Fig. 5, consisting of a
graphs series calculated for different values pSuo
from 0.1 to 10 (Fig.5a-d) and the same
frequency of yL?/D =50. As the parameter o
increases, the asymmetry coefficients of the
potentials decrease, which leads to an increase in
the flux values: monotonically for a sawtooth
potential (provided the amplitude is the same)
[26] and non-monotonically for a double-sine
[29]. This tendence persists for solid and dotted
dependences. When the parameter o for the flux
created by the LSM method increases (dashed
lines), the increase in asymmetry is compensated
by the decrease in amplitude, which gives a
behavior similar to the behavior of the flux for
double-sine.

j.f';‘r.;]

Fig. 4. Calculated temperature and frequency dependences of the flux J/Jo for three values of the parameter a
(shown in the graphs). Graphs a, c, e are plotted with fixed yL?/ D =50 (Lg[yL?/ D] =1.70), and b, d, f —
with fixed Suo=2 (gray curves) and fuo=6 (black curves). Corresponding values on the axes of
temperature and frequency parameters are marked with dashed lines. Calculations were performed with a

fixed value and phase shift 1o = 0.25
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Fig. 5. Dependences of the flux J / Jo on the parameter « for various fixed values fuo (shown in the graphs) at a

fixed values of yL2/ D =50 and 4o = 0.25
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Fig. 6. Diagrams of the motor stopping points location relative to the parameters Suo and Ao for three parameter
values o : 1/8, 1/4 and 3/4 (a, b, c, respectively). All dependences are built at a fixed value yL? /D = 0.1

Fig. 6 shows diagrams of motor stopping
points depending on the variables Suo and Ao.
They determine the ratio of these parameters,
which ensure the occurrence of a ratchet effect in
a certain direction (that is, a flux of a certain
sign). Previous studies [29] showed that low-
frequency regions are the most sensitive to
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temperature-frequency control, so the value
yL2/D=0.1 was chosen for comparative
analysis. For the cases of values o : 1/8, 1/4, the
stopping points curves are very close (especially
with the dependence calculated by the LSM
method), i.e., the regions of sign constancy are, in
fact, identical, and for the values a<0.5
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corresponding to the single-well potential, the
temperature-frequency dependence direction of
the velocity of the motor with a double-sine
potential and a sawtooth potential constructed by
the LSM method are identical. For the case
a < 3/4 (Fig. 6 c), the differences in the regions of
sign constancy are significant, i.e., in the region of
low temperatures (the region of large values of
Pug) for controlling fluxes generated by different
types of potentials, it will be different, and the use
of approximation potentials is inappropriate.

For the most frequently used form of the
double-sine potential with o =1/4, we have
carried out an additional level comparative
analysis of the fluxes created by the double-sine
Jsin and the sawtooth Jsaw (constructed by the LSM
method) potentials. Fig. 7a shows the contour
graph of the flux ratio Jsaw/ Jsin, and Fig. 7b —
values of the relative deviation of fluxes:

oo .

saw " Ysin

10

- 66

57

48

38

29

20

-08 04 16 28 40
Log %D
a

AJ = (‘] )/‘]sin ' (20)

sin ‘]saw
from the parameters puo and yL?/ D. The darker
areas of the graph in Fig. 7 a correspond to the
areas of the parameters for which the differences
in the ratchet effect will be maximal, and the
darker areas in Fig. 7 b is the closest value of the
fluxes. The greatest coincidence is characterized
by the range of large values of the frequency

parameter yL?/De (10%°,10%) and high and

medium temperatures, for which it is possible to
find such a value of the temperature parameter Suo
that the difference between the fluxes does not
exceed 0.05. The biggest difference is in the areas
of medium temperatures and low frequencies
yL?/ D <1072 for which the ratio reaches a
value of Jsaw / Jsin 6 Or more.

L
-0,8 0,4
Log #%D

b

Fig. 7. a — areas of difference of the ratchet effect: contour graph of the ratio Jsaw/ Jsin for a range of values
Jsaw / Jsin > 2; b — regions of the identity of the ratchet effect: values of the relative deviation of fluxs A; for
the range of values of A;< 1. Regions Jsaw/ Jsin <2 in Fig.a — A;>1 and in Fig. b marked with dashes.
Calculations were carried out with a fixed value of parameters o = 1/4 and phase shift Ao = 0.25

DISCUSSION AND CONCLUSIONS

The phenomenon of the ratchet effect is
diverse and widespread [1-5], but there are
literally several mechanisms behind it. To isolate
them, describe them theoretically, model, be able
to predict, modify, learn to control them, and,
finally, artificially reproduce them — these are the
tasks and goals of the theory of Brownian motors.
In addition to considering individual models, the
theory of Brownian motors is aimed at finding
and identifying the general properties of the
ratchet effect as an object of its study.

160

The most widely used in the theory of
Brownian motors are double-sine (smooth) and
sawtooth (piecewise-linear) dependences of
potential energy. The source of such periodic
asymmetric electrostatic potential can be a chain
of collinearly located dipoles. Tasks of the
research was to find how the ratchet effect will
behave when the class of the model potential is
changed from smooth to piecewise linear, and to
choose the optimal approximation method for
different ranges of model parameters, which
would minimize changes in the resulting flux.
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To compare the ratchet effects created by
these two types of stationary potentials, a model
of a stochastic Brownian motor with small
potential energy fluctuations the by a harmonic
signal, which has no limitations in the ranges of
the medium temperature and the frequency of
fluctuations, was chosen. In this case, the ratchet
effect can be studied in all modes of operation of
the motor, and the obtained result can be used in
various narrower approximations.

To accomplish the task, two approximation
methods of double-sine potential by sawtooth
were considered - the simple (by means of which
the extremum points are connected by segments)
and the least squares method (LSM). In general,
any two asymmetric single-well potentials with
similar asymmetry can be considered close
dependences, which, after calculations using the
same procedure, should give a very close result.
However, for the theory of Brownian motors,
their differences under certain conditions can be
fundamentally important. A simple
approximation method keeps the height of
potential barrier and the position of the barrier
and the well, i.e., if the ratchet effect is “started
up” precisely by the barrier value and its location
relative to the potential well on the spatial
period, then this method should give a similar
behavior of the flux magnitude. The LSM
method repeats the shape and slopes as closely
as possible (in fact, the sawtooth potential
segments model conventional straight-line
sections of double-sine potential), and if the
ratchet effect is “launched” throughout the
spatial period, this method will show a greater
similarity of results. In addition, different modes
of operation may have their own peculiarities.

To visualize general view of the patterns
from external parameters — temperature fuo and
frequency yL? / D, flux values surfaces generated
by the double-sine potential with a fixed a = 1/4
and corresponding sawtooth potential
constructed by the LSM method were plotted.
They demonstrated the same nature of the
dependences — non-monotonic, with a similar
position of the maximum and a significantly
larger amplitude for the sawtooth potential (see
Fig. 3). The next series of two-dimensional
graphs of sequentially depicted temperature and
frequency dependences of the flux J (Fig. 4)
showed that in the region of average values of
temperature and frequency it is impossible to
indicate the optimal approximation method due
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to the difference in the position of the maxima
and the resulting competition of values. But, for
fixed external parameters, it is sufficient to
obtain the temperature dependence to determine
the approximation method. However, in the
boundary regions, the behavior of the fluxes
turned out to be more stable: at high
temperatures for any values of «, the simple
method gives the best results, and at high
frequencies — the LSM method. A family of
graphs of the behavior of fluxes as a function of
the parameter o (Fig.5) for different
temperatures shows that in the high-temperature
approximation, in principle, replacing the
potential class greatly distorts the result, and in
the region of average temperatures for single-
well double sine potentials, the simple method is
preferable, and with a further decrease
temperature (Buo > 4), greater correspondence
will be shown by the LSM method. A conclusion
that is important for practical use in calculations
follows from the diagrams of motor stopping
points with different stationary potentials
(Fig. 6): for single-well double sine potentials
(Fig. 6@, b), the LSM approximation method
gives identical dependences, that s, for
modeling temperature-frequency control, it
makes no difference what type of potential to
use; it is important to relate them to each other
according to the LSM method. And, finally, as a
result of an additional study of the areas of
identity and difference flux values generated by
the double-sine potential with a fixed and
corresponding sawtooth potential constructed by
the LSM method, the corresponding contour
graphs of flux ratios were constructed. The
performed calculations showed that identical
values of fluxes are characteristic for the entire
range of temperatures and high frequencies of
potential fluctuations, and the biggest differences
appear at low frequencies of fluctuations and
especially for the average values of the
temperature parameter of the environment.
Physically, this can be explained by the fact that
with a rapid change of the potential energy form,
the particle “does not have time” to feel the
“details” of this form, it reacts to the asymmetry
“as a whole”, therefore the values of the
velocities are almost the same in the two
potential profiles. With slow fluctuations (in the
adiabatic regime), on the contrary, the form of
potential barriers and wells “come to the fore”:
sharp extrema (casp points) of the sawtooth
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dependence create a much greater “locking
effect”, and the velocity from sawtooth potential
is generated by 6 or more times higher than
double-sine. The low-temperature region is
characterized by a long stay of particles in the
potential wells due to difficult thermal activation
overcoming the barriers, the generated fluxes are
small, and the influence of the potential shape on
the motion characteristics is also reduced.

The works of other authors [30, 31, 38]
previously concluded that the high-frequency
limit of motor operation is the most sensitive to
the shape of the potentials, while we received
opposite results about identical flux values in
this region. However, this contradiction can be
explained by the difference in the formulation of
the problems: indeed, the high-frequency region
is sensitive to slopes, therefore the LSM method
(which preserves slopes) does not distort the

Thus, we performed a large-scale
comparative study of the dependence of the
behavior of the ratchet effect on the shape of the
stationary potential profile. First of all, it is
important for carrying out and optimizing future
calculations of the diffusion transport
characteristics along periodic structures of
various types. Secondly, the results obtained
made it possible to clarify and expand the
previously known conclusions about high-
frequency nanotransport and demonstrate the
areas of parameters that are most sensitive to the
class of model potential (smooth and containing
casp points). Finally, this work shows that
ratchet effects created by related dependences
(i.e. almost identical conditions) can differ in
magnitude by several times, which can be used
in the construction of highly efficient models of
nanomechanisms.

resulting flux, while the simple method in this
region makes a big difference.

JAudy3iiiHuil TpPAaHCIOPT B3/10BK CTPYKTYPOBAaHOI IOBEPXHi: CTIlKICTh peTueT-eeKTy NpPHU
3aMiHi THIIY OTEHUiaJJbHOTr0 npogiaro

T.€. KopoukoBa, B.O. Mamupa, T.FO. I'pomosuii, A.Jl. Tepeunb
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eyn. Ienepana Haymoesa, 17, Kuis, 03164, Ykpaina, tais.crust@gmail.com
ITncmumym npobnem mamepianosnascmsa im. 1. M. @panyesuua Hayionanvhoi akademii Hayk Yrpainu
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Hsuwge pemuem-epexmy 3abesneuye pyx 6azamvox ICHYNOUUX 6 NPUpoOi MONEKYIAPHUX MAWUH Md WINYYHO
CMBOPIOBAHUX HAHOMEXAHI3MIG, WO 30aMHI [HIYIIO8amMuU HANPAGIeHULl OUQY3IIHUL PYX 630082iC NEPIOOUHHUX CIPYKMYP.
Ilea kmouosi paxmopu, HeoOXIOHI ONsl GUHUKHEHHS pemuem-eeKmy, — ye HAAeHicmb acumempii 6 cucmemi ma
opeamizayisi npoyecy HepigHOBANCHUX (aykmyayii. Acumempis Moodice CMEOPISaAmUcs 6e3n0cepeoHbo  Gopmoro
cmayionapHno2o nomenyiany, 6 noui Oii K020 0peaHizoéano ooHoHanpaeienuu pyx. Hativacmiwe 3ycmpivaiomvbcs
NOOBIHA CUHYCOIOAbHA (NIABHA) | NUTONOOIOHA (KYCKOBO-THIIHA) 3ANEHCHOCTE ROMEHYIaNbHo20 npoghimo. [icepenrom
MaKoi' 3a1exiCHOCmi Modce OYMuU JAHYIOHCOK KOJIHEAPHO PO3MAWIO8AHUX OUNOJIE HA NOBEPXHI MEepdo20 mina. 3adauero
00CiONCeHHsT OYIO 3HAUMU, SIKUM YUHOM 3MIHUMbCS pemuem-eeKm npu 3aMiHi KIAcy MOOENbHO20 NOMEHYIAny 3
NIABHO20 HA KYCKOGO-NIHIUHUL. /[ Yyb02o OYI0 PO32IAHYmMO 08a Memoou anpoKCuMayii NOOGIIHO20 CUHYCOIOAbHOZO
nomeHyiany RuIOnoOiOHUM: npocmuti (simple), npu sKomMy moOuKU excmpemymié 3 €OHYIOMbCsl NPAMOIHIIHUMU
ceameHmamu ma 30epieaemvcsi 6UComa NOMeHYIaIbHO20 6ap '€pa i KOOPOUHAMU eKCMPeMyMI8, ma Memoo HAUMEHWUX
keadpamie (LSM), wo maxcumanbHo 61U36K0 MOOENOE HAXUIU NIABHO20 nomeHyiany. [l npoeeoeHHs NOPIGHSIbHO20
auanizy 6yna oopana mooenb CMOXACMUYHO20 OPOYHIBCLKO20 MOMOPA 3 MAIUMU 30YPEHHAMU NOMEHYIiAIbHOI eHepaii
CAPMOMIUHUM CUSHATIOM, 5IKA He MAE 00MedceHb 8 OIana3oHax memMnepamypu cepedosuwa ma 4acmomu Gaykmyayi, i
pemuem-eghekm Mod#cHa 00CHIOHCY8amu 8 ycix pedxcumax pobomu momopa. Ilokazamo, wo 3a Odocumov GUCOKUX
memnepamyp 01 0yob-aK0i acumempii nomenyianie anpoxcumayis memooom simple dae Kpawi pezynvmamu, a 3a
sucoxkux uacmom — memoo LSM. 3anpononosano anzopumm GUsHAUeHHA KpAujo2o memoody anpoxcumayii 8 obiacmsax
napamempis, wo 2eHepyromv HaudIbWI 3HaAUeHHs NOMOKIE. Bcmanoeneno, wjo 0711 OOHOSMHUX ROOBIUHUX CUHYCOLOAIbHUX
nomenyianie  anpoxcumayitinuii - LSM-nomenyian ~ dac  i0emmuuni  pesyibmamu  memMnepamypHO-4acmomHux
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sanexcrhocmeti. 1106y006ano KOHMYpPHI epagpixu BIOHOCHUX BeUYUH NOMOKIB, WO OeMOHCMPYIOMb 00IACMI nApamempie
HaubOIIbW020 cnignadinHs (cmabinbHocmi) pemuem-eexmy ma obaracmi HAUOGLILUOL PO3OINHCHOCTII.

Knwowuoei cnosa: ounonvhuii 1aHYlodNCcoK, OpPi€HMAaYitiHO-CMPYKMYpo8ana CUCMeMd HA NOBEPXHI, KepOoGaHUll
OU@Y3itiHull Mpancnopm, NPUNOBepXHese MACONepeHecents, OPOYHIBCbKI Momopu, pemuyem-edpexm, Gaykmyayii
nomenyiany
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