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The phenomenon of the ratchet effect provides the motion a large number of molecular machines, existing in 

nature and artificially created nanomechanisms, capable to initiate directed diffusion movement along periodic 

structures. Two key factors, necessary for the ratchet effect occurrence, are the presence of asymmetry in the system 

and the organization of the non-equilibrium fluctuations process. Asymmetry can be created directly by the 

stationary potential form, in the field of which unidirectional motion is organized. Double-sine (smooth) and 

sawtooth (piecewise-linear) potential profile dependences are encountered most frequently when designing models. 

The source of such dependence can be a chain of collinearly located dipoles on the surface of a solid. The purpose of 

this work was to study the influence on the ratchet effect of changing the model potential class from smooth to 

piecewise linear. For this purpose, two methods of approximation of the double sinusoidal potential by a sawtooth 

were considered. The first, simple, consists in connecting the extremum points with straight-line segments, 

preserving the height of the potential barrier and the coordinates of the extrema. The second, the least squares 

method (LSM), reproduces the slopes of the smooth potential as closely as possible. A model of a stochastic 

Brownian motor with small fluctuations of the potential energy by a harmonic signal was chosen for the comparative 

analysis. This model has no limitations in the ranges of the environment temperature and fluctuation frequency 

parameters, so the ratchet effect can be studied in all operation modes of the motor. It is shown that at sufficiently 

high temperatures for any asymmetry of potentials, approximation by the simple method gives better results, and at 

high frequencies – the LSM method. An algorithm for determining the best approximation method in the ranges of 

parameters that generate the largest flux values is proposed. It has been shown that for single-well double-sine 

potentials the approximate LSM-potential gives identical results of temperature-frequency dependences. Contour 

graphs of relative flux values were plotted, demonstrating parameters regions of the greatest identity (stability) of 

the ratchet effect and the region of the greatest difference. 

Keywords: dipole chain, orientation-structured system on a surface, controlled diffusion transport, near-surface 

mass transfer, Brownian motors, ratchet effect, potential fluctuations 

 

INTRODUCTION 

Today, the task of modeling, designing and 

developing scientific theories of nanomechanism 

motion is relevant and promising in many fields 

of scientific research [1–4]. Nanoscale devices, 

regardless of their structure and functions, are 

immersed in a liquid or gaseous medium and 

experience thermal motion of molecules of the 

environment. The interaction between the 

particles and the medium is quite comparable in 

magnitude to other interactions acting on the 

nanodevice. The presence of such an interaction 

fundamentally distinguishes nanoscale motors 

from macroscopic devices [1]. Brownian motors 

are a class of nanoscale mechanisms that use the 

thermal noise of the environment as one of the 

useful (necessary) components in generating 

their own motion [2]. The mechanism of 

Brownian motor operation is based on the idea 

of rectification the already existing chaotic 

Brownian motion of a nanoparticle with the help 

of spatial asymmetry created in the motor's 

surroundings and the unbiased fluctuations 

imposing into the system. These fluctuations, on 

the one hand, are a source of energy (“fuel”) for 

the motor and, at the same time, a factor that 

disrupts the thermodynamic equilibrium state, 

due to which the occurrence of directional 

motion (occurrence of the ratchet effect) 
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becomes possible [1–4]. The mechanism of 

Brownian motor operation explains the motion 

of many naturally occurring molecular devices 

that carry out intracellular transport (for 

example, the motion of kinesin and dynein along 

microtubules [6, 7]), perform complex collective 

processes in living organisms (for example, 

myosin and actin, which are responsible for 

muscle contraction) [2, 3, 8], as well as less 

obvious processes related to the generation of 

motion: proton ATP synthase, the 

implementation of active membrane transport 

through ion channels, rotation of molecular 

rotors, etc. [5–9]. In addition to biological ones, 

there are many artificially created nano-

mechanisms built on the phenomenon of the 

ratchet effect: particles moving in a liquid or 

gaseous solutions in the field of action of a 

periodic asymmetric potential [10, 11], the 

motion of electrons in semiconductors [12], 

devices for particle separation [13–15], transport 

of nano-cargoes similar to protein motors along 

periodic fibers [16–18], manipulation of charged 

membrane components, proteins and lipids, in a 

structured lipid bilayer [19, 20], creation of 

various molecular rotors near surfaces [21–24] 

etc. 

In Chuiko Institute of Surface Chemistry of 

the National Academy of Sciences of Ukraine 

since 2003, fundamental research in the field of 

Brownian motor theory and its application to 

mass transfer processes near the surface of a 

solid body is carried out. Thus, a number of 

models were proposed demonstrating the ratchet 

effect occurrence near the surface. It was 

analytically proven that Brownian particles that 

cyclically gain and lose electric charge (on-off 

model [1]) can move unidirectionally along 

ordered dipole chains on the surface of a solid 

[25, 26]. It was shown that charged particles will 

move unidirectionally under the action of an 

externally applied alternating electric field, 

which with a certain frequency brings the 

particle closer and further away from the surface 

and changes its potential energy [27]. It was 

theoretically investigated that resonant laser 

irradiation of a particle with a variable dipole 

moment initiates the directional motion of this 

particle in a spatially periodic potential (the 

concept of a photomotor). It was analytically 

demonstrated that the sorbed polar molecule in 

the potential of hindered rotation moves around 

unidirectionally under the action of an 

alternating electric field (molecular rotor model) 

[27], etc. 

So, the ratchet effect is the mechanism by 

which the Brownian motor works, as it initiates a 

directed, not a chaotic, motion. Two key factors 

necessary for the ratchet effect occurrence are 

the presence of asymmetry in the system and the 

organization of the process of non-equilibrium 

fluctuations. If the asymmetry is created directly 

by the shape of the stationary potential profile, 

then we are talking about such systems as 

ratchets [1], and then the properties of the 

surface will be decisive in the generation of 

fluxes. By manipulating the composition and 

structure of the surface, we can create such a 

potential profile that will generate a flux of 

nanoparticles of a given magnitude and 

direction. The presence of a structured substrate, 

which is a source of spatial periodicity and 

asymmetry, provides the possibility of 

implementing at least two concepts of Brownian 

motors near the surface: initiating the directed 

diffusion motion of Brownian particles along the 

structured chains of adsorbed molecules of the 

surface layer [25, 26] or the unidirectional 

rotation of an adsorbed polar molecule, which is 

in the field of action of the potential of 

neighboring atoms [26, 27]. That is, combining 

the theory of Brownian motors with surface 

physics and chemistry is a promising 

interdisciplinary direction that allows 

constructing models of non-biological 

nanodevices, which, in turn, can be used to 

create controlled diffusion transport in near-

surface layers or in various studies of surface 

properties by molecular rotors [26, 27]. 

In general, model potential profiles, in the 

field of which directed diffusion motion is 

generated, are divided into two large classes: 

smooth and piecewise linear (that is, those that 

contain areas of large gradients of potential 

energy change). These classes are headed by two 

“archetypal” potential profiles [2], the most 

characteristic and most often used – double-sine 

[2, 28] and sawtooth [2, 3] dependences. Many 

well-known models have been formulated and 

calculated for them, and analytical solutions in 

various approximations have been found [1–4]. 

Despite the fact that these potentials are both 

single-well, asymmetric and visually similar in 

shape, the resulting ratchet effect can differ 

significantly in its properties, such as, for 

example, the possibility of temperature-
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frequency control of the motion direction [29]. 

In addition, since the sawtooth potential is much 

easier to parameterize and often analytical 

solutions are easier to obtain precisely for it, it 

may be necessary to replace the model potential 

[25, 26] from smooth to sawtooth within the 

framework of one model to obtain an analytical 

solution. Peculiarities of the ratchet effect 

depending on the potential profile shape were 

studied only within the framework of particular 

approximations (for example, comparative 

studies of high-frequency different classes 

ratches [30, 31]). However, when designing 

artificial Brownian motors operating in certain 

frequency and temperature regimes (for 

example, devices for particle separation [1–5]), 

in order to select a specific periodic substrate, 

knowledge about the influence of the stationary 

potential profile shape on the resulting flux over 

the entire range of control parameters is 

required. So, the purpose of this work was to 

study the influence on the ratchet effect of 

changing the model potential class from smooth 

to piecewise linear. The approximation of small 

fluctuations is best suited for this task, because it 

is based on a “leading” stationary potential, the 

shape of which changes weakly during 

fluctuations. If the perturbing factor is chosen to 

be the same as the other control parameters of the 

system, it is possible to directly highlight the 

influence of the shape of our model “master 

potential” on the magnitude and direction of the 

resulting flux, which is intended to be done in this 

work. Also, in order to formulate 

recommendations for obtaining the most similar 

ratchet effect when replacing potentials within the 

framework of one problem, it is advisable to 

consider different types of approximation and 

their results in the full ranges of control 

parameters, which will allow to identify areas of 

parameters that ensure the identity and maximum 

divergence of the generated fluxes, as well as 

clarifying the physical factors of such behavior. 

In the next section, a description of the 

motion dynamics of a Brownian particle in an 

alternating potential will be considered and a 

numerical procedure for calculating the main 

characteristics of the ratchet effect in the 

approximation of small fluctuations will be 

given. Then the potential of a dipole chain as a 

component of a structured surface will be 

reviewed, and options for selecting a simple 

model potential will be discussed. After that, the 

methods of approximating smooth potentials by 

sawtooth potentials will be described, the 

obtained calculation results depending on 

various model parameters will be considered and 

analyzed, and conclusions will be formulated. 

RATCHET EFFECT CALCULATION IN THE 

FRAME OF SMALL FLUCTUATION 

APPROXIMATION 

Typically, the ratchet effect is described by 

considering the one-dimensional motion of a 

Brownian particle in an external force field 

characterized by a potential energy U(x, t) that 

depends on the coordinate x and time t. 

Dynamics of studied particle-motor is described 

by the Smoluchowski equation for the 

distribution functions ρ(x, t), defining the 

location of the particle in a time moment t 

[3, 29, 32–34]: 

( , ) ( , ) 0x t J x t
t x


 
+ =

 
,          (1) 

( , ) ( , )( , ) ( , )U x t U x tJ x t De e x t
x

  − 
= −


.         (2) 

Equation (2) sets the probability flux J(x, t), 

D ≡ (βζ)–1
 – the diffusion coefficient and ζ – the 

friction coefficient. 

The approximation of small potential energy 

fluctuations, developed by the team of authors 

[32], is used, first of all, to describe a wide class 

of artificially created molecular machines. It 

assumes that the potential profile U(x, t) has an 

additive-multiplicative form [34, 35]: 

( , ) ( ) ( ) ( )U x t u x t w x= + ,           (3) 

in which the first term u(x) describes the 

stationary (undisturbed) profile, and the second 

term σ(t)w(x) describes the fluctuating 

component (disturbance). Small fluctuations of 

the potential energy correspond to the case when 

w(x) << u(x). At the same time, it is assumed that 

|σ(t)w(x)| / kBT << 1, and the ratio |u(x)| / kBT is 

considered arbitrary. 

We will use a harmonic signal w(x) with 

amplitude w, spatial period of the system L and 

phase shift λ0 as a small fluctuating component 

of the potential U(x, t) [34,  35], that is easy to 

realize experimentally for non-biological 

ratchets [36, 37]:  

0( ) cos[2 ( / )]w x w x L = − .
          (4) 
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The function σ(t) is responsible for the time 

dependence of the potential energy U(x, t). Most 

often, fluctuations are introduced into the system 

by stochastic dichotomous process, i.e. one that 

reflects the course of random homogeneous 

phenomena characterized by average values. 

Stochastic (random) fluctuations are typical for 

protein motors: due to the cyclic course of the 

chemical reaction of ATP hydrolysis, 

conformational changes occur in the motor 

protein, which causes fluctuations in the 

effective potential profile [3, 6, 7, 11], or for 

artificial nanomechanisms in which a random 

number generator or the course of chemical 

reactions is used to switch states [38]. 

Let us assume that a symmetrical 

dichotomous process is implemented in our 

system, in which σ(t) takes two values +1 or –1 

and alternating with a given frequency of 

transitions γ. That is, with this type of 

fluctuations, the motor particle has potential 

energy (3) in the form U(x, t) = u(x) ± w(x), and 

switching between two states (u(x) + w(x)) and 

(u(x) – w(x)) occurs randomly with an average 

frequency γ. 

The approximation of small fluctuations [34] 

makes it possible to develop a numerical 

procedure for finding the main characteristic of 

the Brownian motor - the constant flux of 

particles ( , )J J x t , using the Green’s 

function method [34, 35]. For this purpose, all 

periodic components of the potential energy u(x), 

w(x) and functions of the equilibrium 

distributions in the stationary potential u(x) 

(0) ( ) ( )

0
( )

L
u x u xx e dxe  − −=   and ( ) ( )

0
( )

L
u x u xq x e dxe =   

are represented in the form of Fourier series 

( ( ) pik x

pp
f x f e=  (where kp = 2πp / L, 

p = 0, ±1, ±2,…; f(x) – each of these functions), 

and the procedure consists in inverting the 

matrix, and finding Green’s function Fourier 

components of the Spp' and further double 

summation to find the flux value J [29]:  

0
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



             (5) 

where Г = 2γ. The desired velocity of the 

Brownian motor will be equal to  v L J= = LJ. 

We note that the described procedure 

does not specify the form u(x) of the stationary 

potential, but only the perturbing component (4). 

In the subsequent sections of the article, based 

on system (5), numerical calculations of the flux 

will be carried out to juxtapose the contributions 

of the two stationary profiles that we are 

comparing. 

THE POTENTIAL OF A DIPOLE CHAIN 

It is known that an orientationally structured 

system of adsorbed polar molecules can form on 

the surface of a solid under certain conditions: 

the ground state of two-dimensional dipole 

systems corresponds to ferroelectric or 

antiferroelectric structures (dependent on the 

type of two-dimensional lattice of the adsorbate), 

consisting of chains with collinear orientations 

of dipole moments along the chain axis [25]. 

Such a dipole chain with a period L creates an 

electrostatic field (Fig. 1), in which a charged 

particle q has a potential energy Vz(x, z), which 

can be written in the following form [25]: 

( ) 0 0 0 2
1 0

2 2 2
, sin , ,z

h

h h q
V x z V hK z x V

L L L

  





=

   
= =   

   


( ) 0 0 0 2
1 0

2 2 2
, sin , ,z

h

h h q
V x z V hK z x V

L L L

  





=

   
= =   

   
             (6) 

where μ is the dipole moment of the adsorbed 

molecule, ε0 is the electric constant, and K0(x) is 

the Macdonald function. The dependence of the 

potential energy on the spatial coordinates (6) is 

obviously periodic along the axis with a period L 

(like a dipole chain) and rapidly decreases with 

distance from the chain: the amplitude’s value 

decreases to 0 when the ratio z / L tends to 1 

[25]. In addition to the amplitude, periodic 

dependences are characterized by an asymmetry 

parameter - the ratio of the distance between 

adjacent extrema to the spatial period, and if this 

parameter differs from 0.5, then it is an 

asymmetric dependence [3, 25]. For the potential 

energy Vz(x, z), the asymmetry parameter also 

changes (decreases) when moving away from the 

chain and goes to 0.5 as the ratio z / L tends to 1 

[25]. 
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Fig. 1. Spatial dependence of the potential energy of a charged particle q near the dipole chain, and (in the upper 

left tab) its dependence V(x) for fixed values z / L (labeled on the curves). During calculations, series (6) 

was limited to h = 20 

 

If the external alternating electric field for 

some time has only a tangential component that 

keeps the particle-motor at a certain fixed 

distance z / L from the chain, then for this period 

the parameters of the potential energy are 

constant, and it will depend only on the 

coordinate x: V(x) = Vz(x, zconst). The tab of Fig. 1 

shows the dependences of the potential energy 

V(x) / V0 for three fixed values of the ratio 

z / L = 0.18, 0.22, 0.28. That is, the shape of the 

potential energy spatial dependence of the 

interaction between the charged particle-motor 

and the dipole chain, as an example of a real 

system, will significantly depend on the distance 

to the chain at which the motion will occur. 

Thus, in work [25] a fixed value z / L = 0.28 was 

chosen (the curve with the smallest amplitude in 

the tab of Fig. 1), and for it the approximation by 

a double-sine dependence (restriction of the 

series (6) to two terms) is quite sufficient: 

0 0 02

0

1 2
( ) [sin(2 / ) sin(4 / )], (1.76)

4

q
v x u x L x L u K

L


 


= + = 

0 0 02

0

1 2
( ) [sin(2 / ) sin(4 / )], (1.76)

4

q
v x u x L x L u K

L


 


= + = .           (7) 

The double-sine potential first appeared in 

the theory of Brownian engines in this form [28], 

and is now encountered most often [3]. But when 

approaching the dipole chain with increasing 

amplitude and asymmetry, it is obvious that 

function (7) will no longer approximate the 

dependence V(x), and even if it remains in the 

class of smooth potentials, the coefficient at the 

second harmonic must be variable. For small 

z / L ones (see the curve with the largest 

amplitude in the tab of Fig. 1), it is obvious that 

approximation by a saw-like function will be 

more successful. In the next section, using the 

example of a double-sine dependence with 

variable coefficients, options for its 

approximation by a sawtooth dependence will be 

considered. 

METHODS OF APPROXIMATION OF A 

DOUBLE-SINE POTENTIAL BY A 

SAWTOOTH 

Setting the double-sine potential. The 

potential energy of a particle in the form of a 

double-sine potential (or biharmonic potential) is 

generally given by the formula: 

sin 1 2( ) sin(2 / ) sin(4 / )u x A x L A x L = + ,         (8) 

that is, it represents the sum of two sinusoids of 

different periods L and L/2 with independent 

amplitudes, respectively, A1 and A2 having the 

dimension of energy. If we enter the 

dimensionless coefficient α = A2 / A1, then the 

function (8) will take the form: 

 sin 1( ) sin(2 / ) sin(4 / )u x A x L x L  = + .       (9) 

The double-sine potential is an 

antisymmetric periodic function with a period L, 

which has centers of symmetry at the zero points 

of the function Ln / 2, / 2,Ln n Z  (see Fig. 2 a), is 

single-well at α < 0.5 and double-well at α > 0.5. 

This function is spatially asymmetric, and its 

coefficient of asymmetry is usually determined 

by the ratio of the distance between the nearest 
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minimum and maximum to the spatial period by 

analogy with the sawtooth potential [3]: 

max min( ) /h x x L = − .         (10) 

The use of the potential in form (8) or (9) is 

convenient in the case α < 1 that, i.e., the 

contribution of the second harmonic with a half 

period is small, and it practically does not 

increase the amplitude of the potential. For 

sufficiently large values, it is more convenient to 

use the potential with additional normalization, 

which allows one to separate the asymmetry of 

the potential and its amplitude and make them 

independent parameters [29]: 

sin 0( ) ( ), ( ) ( )[sin(2 / ) sin(4 / )],nu x u f x f x C x L x L   = = + 

sin 0( ) ( ), ( ) ( )[sin(2 / ) sin(4 / )],nu x u f x f x C x L x L   = = +       (11) 

where the coefficient Cn(α) is calculated by the 

formulas: 

1

max max( ) [2(sin(2 / ) sin(4 / ))]nC x L x L    −= + , 

2 1 1

max arccos[(2 8 (4 ) ) / 8] / 2x   − −= + − .    (12) 

The normalization coefficient is calculated 

for each value α and is equal to doubled value of 

the expression of formula (10) in square brackets 

at the maximum point xmax (see Fig. 2 a). That is, 

for any value α, the dimensionless expression 

f(x) has a full unit amplitude. 

Setting the sawtooth potential. The sawtooth 

potential is a periodic piecewise linear function, 

for its specification the spatial period is divided 

into several (two or three) intervals, on which the 

equations of straight lines are specified. Most 

often, the sawtooth potential is given by two 

segments in the following form [26]: 

/ , 0 ,
( )

( ) / ( ), ,
s

x l x l
u x u

L x L l l x L

 
= 

− −  
       (13) 

with this definition us > 0, it is periodic 

(us(x + nL) = us(x), ( ) ( ),s su x nL u x n Z+ =  ) and does not belong to 

the classes of symmetric or antisymmetric 

functions. The characteristics of the potential are 

very easy to determine: the amplitude (energy 

characteristic) is equal to the coefficient u, and 

the coefficient of asymmetry is equal to 

κs = l / L. 

In tasks for which it is necessary to carry out 

an approximation by a sawtooth potential, it is 

more convenient to specify it in the form of an 

antisymmetric function (see Fig. 2 a, large-

dashed dependence): 

0 0

0

0 0

/ , 0 ,
( )

( / 2 ) / ( / 2 ), / 2.
s

x x x x
u x v

L x L x x x L

 
= 

− −  
 

           (14) 

With this method of setting, the function ũs(x) 

can take both positive and negative values; x0 – 

maximum coordinate, ν0 – potential amplitude. It 

is obvious that dependences (13) and (14) 

correspond to one and the same function shifted 

along the axis x by x0, and along the energy axis 

by ν0, that is l = 2x0, u = 2ν0, and κs = 2x0/L. 

 
a 

 
b 

 
c 

Fig. 2. a – the potential of a double-sine (11) (solid line) and its variants of approximation by a sawtooth potential; 

dependences of b – the asymmetry coefficients and c – the value of the quadratic deviations (15) on the 

parameter α for the simple approximation method (dotted lines) and the LSM method (dashed lines) 
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Since only the derivative of the potential 

energy is included in the Smolukhovsky equation, 

the position of the potential function along the 

energy axis is not important. A certain problem is 

the shift along the axis, which affects the phase 

shift between the stationary and fluctuating 

components of the potential, so it must be taken 

into account in the calculations accordingly. 

Methods of approximation. Usually, works 

(see, for example, [25, 26]) use a simple method 

of transition between defined potentials, which is 

the connection of maxima and minima of the 

double-sine potential with segments (see 

Fig. 2 a, dotted lines). A sawtooth potential is 

formed, in which all characteristics completely 

match with the characteristics of the double-sine 

potential: the coordinates of the extrema x0 = xmax 

and the asymmetry coefficient κs = κh. If we 

approximate the potential given by expression 

(9), then the resulting amplitude will be equal to 

A1, if we use additional normalization and the 

original dependence (11), then the amplitude of 

the approximation potential will be equal to u0. 

Another approximation option is the least 

squares method (LSM), which was discussed in 

detail in our article [35]. It consists in finding the 

minimum of the integral factor of quadratic 

deviations between the double-sine potential and 

the sawtooth dependence function in the entry 

(14): 
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which allows numerical methods to obtain the 

values and coordinates of the maximum x0 and 

ν0. According to the LSM method, the 

parameters of the sawtooth potential are 

calculated in such a way that the “distances” 

between the functions at each point are minimal, 

and the forms of dependence are maximally 

similar, as a result, we obtain a potential with a 

different position of the maximum, amplitude 

and, accordingly, the asymmetry parameter 

(Fig. 2 a and 2 b, dashed lines). 

Table 1 shows the parameters of sawtooth 

potentials formed by two types of approximation, 

simple and LSM, calculated for some fixed values 

of the parameter α: the position of the maximum 

xmax and the asymmetry coefficient κh
 

 for the 

simple method (which match with the 

characteristics of the double-sine potential); and 

LSM approximation parameters: the position of the 

maximum x0, the asymmetry coefficient κh
 
 and the 

amplitude’s ratio of the double-sine and 

approximating potentials ν0 / A1 for the case of the 

initial dependence in the form (9) and ν0 / u0 – in 

the form (11). 

Table 1 shows the data corresponding to 

parameter values α from 1/8 to 3, but since the 

double-sine potential remains single-well only 

when α < 0.5 the applicability of the 

approximation for large values α is under the 

question. In addition, the total quadratic 

deviations have the smallest values in the range 

0 < α < 0.5 (see Fig. 2 c), and with further α 

growth steadily increase, which indicates an 

increasingly large discrepancy between the 

original and approximation function. In this 

regard, we carried out most of the calculations 

for the range of α < 1. 

It is worth adding that the considered types 

of approximation will be suitable and similarly 

implemented for any smooth potential: a simple 

method will consist in connecting the largest 

potential barrier and the deepest well with 

segments, and the LSM method will consist in 

solving the resulting system of equations when 

searching for the minimum value of expression 

(15) when replacing the potential ũsin(x) with 

another investigated. 

CALCULATION RESULTS 

For a comparative analysis, the numerical 

procedure (5) was applied consistently to three 

stationary potentials: a double-sine with a 

normalization coefficient (11), and two 

approximate saw-tooth potentials (14) with 

different parameters obtained by the simple and 

LSM methods. The corresponding Fourier 

components are given by the following 

expressions: 

0
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and the Fourier components of the fluctuation 

function w(x) have the form: 
0 02 2

, 1 ,1 .
2

i i

p p p

w
w e e

    −

−
 = +         (19) 

 

Table 1. The most used values of the parameter α and the corresponding characteristics of the sawtooth potential 

for two types of approximation 

α Cn(α)  

Simple method LSM method 

xmax κh  x0 κs ν0 / A1 ν0 / u0 
Form of potential 

profiles 

1/8 0.486 0.234 0.468 0.201 0.402 1.228 1.193 

 

1/6 0.476 0.208 0.416 0.188 0.375 1.236 1.178 

 

1/4 0.454 0.190 0.380 0.166 0.331 1.258 1.143 

 

1/3 0.430 0.180 0.360 0.149 0.297 1.286 1.107 

 

1/2 0.385 0.166 0.332 0.126 0.251 1.349 1.038 

 

3/4 0.328 0.155 0.310 0.105 0.209 1.456 0.955 

 

1 0.284 0.149 0.298 0.092 0.184 1.569 0.892 

 

1.5 0.223 0.142 0.284 0.078 0.155 1.806 0.805 

 

2 0.183 0.138 0.276 0.070 0.139 2.048 0.748 

 

3 0.134 0.134 0.268 0.061 0.122 2.537 0.681 

 
 

 

In addition to the parameter α corresponding 

to the shape and asymmetry of the potential 

profiles, and the phase shift between the 

stationary and fluctuating components λ0, the 

model system in which the ratchet effect is 

observed is characterized by the following 

external parameters: the temperature of the 

environment, which we introduce as a 

dimensionless parameter βu0 – the ratio of the 

potential barrier’s height to thermal energy, and 
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the frequency of potential fluctuations   is a 

dimensionless parameter γL2 / D (L2 / D – 

nanoparticle diffusion time over the distance of 

the spatial period) [26]. The influence of the 

parameter λ0 was studied in detail in [29]: it 

determines the cyclic dependence of the 

magnitude and sign of the flux, which is the 

same for two types of potentials, so its variation 

is outside the scope of this study. However, even 

excluding λ0, it still remains to investigate the 

dependence of the flux J on three parameters (α, 

βu0, γL2 / D), which, with simultaneous imaging, 

involves the construction of a four-dimensional 

surface. For a detailed analysis of the results, 

consider a series of cross-sectional drawings 

with different combinations of fixed parameters. 

When analyzing the results, the behavior of 

the ratchet effect depending on two parameters - 

temperature and frequency - is of primary 

interest. Fig. 3 shows the surfaces of flux values 

J calculated for the double-sine potential with 

α = 1/4 with the corresponding potential 

approximated by the LSM method. Both surfaces 

show a non-monotonic dependence on both 

parameters (which is typical for ratchets           

[1–4, 26]), and the location of the maxima of the 

surfaces is close, but with a certain shift. The 

essential difference lies in the amplitude of the 

effect: the sawtooth stationary component gives 

a much larger flux in the region of the maximum 

(Fig. 3 b). 

 

  
a b 

Fig. 3. The nanoparticle flux values J surface in units J0 = (βDw2) / (u0L2) depending on temperature βu0 and 

frequency γL2 / D parameters in the model with stationary double-sine (a) and approximated sawtooth 

potential by the LSM method (b). Calculations were carried out with a fixed value of α = 1/4 and phase shift 

λ0 = 0.25 

 

In the next three figures, we will study the 

behavior of the flux J depending on various 

model parameters for the entire set of studied 

forms of the potential energies. The solid lines 

correspond to the values of the flux calculated 

for the double-sine dependence, the dotted lines 

to the approximation by the simple method, and 

the dashed lines – by the LSM method. 

Fig. 4 shows the dependence of the flux 

value in units J0 = (βDw2) / (u0L2) on 

dimensionless parameters βu0 and γL2 / D in 

pairs for three values of the parameter α : 1/8 and 

1/4 (corresponding to the single-well type of a 

double-sine potential) and 3/4 (double-well 

potential). Temperature dependences (left 

column of the graphs) are plotted at fixed 

γL2 / D = 50, and frequency dependences (right 

column) at fixed βu0 = 2 (gray curves) and 

βu0 = 6 (black curves). 

All shown figures, in fact, represent sections 

of surfaces of flux values in variables (βu0, 

γL2 / D), similar to those shown in Fig. 3, planes 

parallel to the axes. In the central regions of the 

graphs of temperature dependences in 

Fig. 4 a, c, e of the flux values, corresponding to 

the simple and LSM methods, compete with 

each other, so it is impossible to determine the 

most appropriate approximation method. 

Nevertheless, it can be found out for a fixed 

value of βu0, based on its position relative to the 
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maximum of the flux dependence curve on the 

temperature parameter: deviating from the 

maximum into the high-temperature region (left 

side of the graph), the fluxes closest in value are 

given by the simple method, and when moving 

to the right from a certain value of βu0, different 

for different α, the LSM method shows a better 

correspondence. Depending on the frequency 

parameter (the three right graphs of 

Fig. 4 b, d, f), the location of the curves for 

different methods almost does not change, so the 

temperature dependence is sufficient to 

determine the optimal approximation method. 

The fact is also important that in the high-

frequency region (right wing of Fig. 4 b, d, f) for 

all α values, the LSM approximation method 

shows better correspondence. 

The study of the influence of the factor α 

that determines the shape and asymmetry of the 

potentials is presented in Fig. 5, consisting of a 

graphs series calculated for different values βu0 

from 0.1 to 10 (Fig. 5 a–d) and the same 

frequency of γL2 / D = 50. As the parameter α 

increases, the asymmetry coefficients of the 

potentials decrease, which leads to an increase in 

the flux values: monotonically for a sawtooth 

potential (provided the amplitude is the same) 

[26] and non-monotonically for a double-sine 

[29]. This tendence persists for solid and dotted 

dependences. When the parameter α for the flux 

created by the LSM method increases (dashed 

lines), the increase in asymmetry is compensated 

by the decrease in amplitude, which gives a 

behavior similar to the behavior of the flux for 

double-sine. 
 

Fig. 4. Calculated temperature and frequency dependences of the flux J / J0 for three values of the parameter α 

(shown in the graphs). Graphs a, c, e are plotted with fixed γL2 / D = 50 (Lg[γL2 / D] = 1.70), and b, d, f – 

with fixed βu0 = 2 (gray curves) and βu0 = 6 (black curves). Corresponding values on the axes of 

temperature and frequency parameters are marked with dashed lines. Calculations were performed with a 

fixed value and phase shift λ0 = 0.25 

 
a 

 
b 

 
c  

d 

 
e 

 
f 
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Fig. 5. Dependences of the flux J / J0 on the parameter α for various fixed values βu0 (shown in the graphs) at a 

fixed values of γL2 / D = 50 and λ0 = 0.25 

 
a 

 
b 

 
c 

Fig. 6. Diagrams of the motor stopping points location relative to the parameters βu0 and λ0 for three parameter 

values α : 1/8, 1/4 and 3/4 (a, b, c, respectively). All dependences are built at a fixed value γL2 / D = 0.1 

 

Fig. 6 shows diagrams of motor stopping 

points depending on the variables βu0 and λ0. 

They determine the ratio of these parameters, 

which ensure the occurrence of a ratchet effect in 

a certain direction (that is, a flux of a certain 

sign). Previous studies [29] showed that low-

frequency regions are the most sensitive to 

temperature-frequency control, so the value 

γL2 / D = 0.1 was chosen for comparative 

analysis. For the cases of values α : 1/8, 1/4, the 

stopping points curves are very close (especially 

with the dependence calculated by the LSM 

method), i.e., the regions of sign constancy are, in 

fact, identical, and for the values α < 0.5 

 
a 

 
b 

 
c 

 
d 



T.Ye. Korochkova, V.O. Mashira, T.Yu. Gromovoy, A.D. Terets 
______________________________________________________________________________________________ 

160                            ISSN 2079-1704. ХФТП. 2025. Т. 16. № 1 

corresponding to the single-well potential, the 

temperature-frequency dependence direction of 

the velocity of the motor with a double-sine 

potential and a sawtooth potential constructed by 

the LSM method are identical. For the case 

α < 3/4 (Fig. 6 c), the differences in the regions of 

sign constancy are significant, i.e., in the region of 

low temperatures (the region of large values of 

βu0) for controlling fluxes generated by different 

types of potentials, it will be different, and the use 

of approximation potentials is inappropriate. 

For the most frequently used form of the 

double-sine potential with α = 1/4, we have 

carried out an additional level comparative 

analysis of the fluxes created by the double-sine 

Jsin and the sawtooth Jsaw (constructed by the LSM 

method) potentials. Fig. 7 a shows the contour 

graph of the flux ratio Jsaw / Jsin, and Fig. 7 b – 

values of the relative deviation of fluxes: 

( ) /J sin saw sinJ J J = − .        (20) 

from the parameters βu0 and γL2 / D. The darker 

areas of the graph in Fig. 7 a correspond to the 

areas of the parameters for which the differences 

in the ratchet effect will be maximal, and the 

darker areas in Fig. 7 b is the closest value of the 

fluxes. The greatest coincidence is characterized 

by the range of large values of the frequency 

parameter γL2 / D
2 2.5 4/ (10 ,10 )L D  (102.5, 104) and high and 

medium temperatures, for which it is possible to 

find such a value of the temperature parameter βu0 

that the difference between the fluxes does not 

exceed 0.05. The biggest difference is in the areas 

of medium temperatures and low frequencies 

γL2 / D < 10–0.2, for which the ratio reaches a 

value of Jsaw / Jsin 6 or more. 

 

 
 

a b 

Fig. 7. a – areas of difference of the ratchet effect: contour graph of the ratio Jsaw / Jsin for a range of values 

Jsaw / Jsin > 2; b – regions of the identity of the ratchet effect: values of the relative deviation of fluxs ∆J for 

the range of values of ∆J < 1. Regions Jsaw / Jsin < 2 in Fig. a – ∆J > 1 and in Fig. b marked with dashes. 

Calculations were carried out with a fixed value of parameters α = 1/4 and phase shift λ0 = 0.25 

 

DISCUSSION AND CONCLUSIONS 

The phenomenon of the ratchet effect is 

diverse and widespread [1–5], but there are 

literally several mechanisms behind it. To isolate 

them, describe them theoretically, model, be able 

to predict, modify, learn to control them, and, 

finally, artificially reproduce them – these are the 

tasks and goals of the theory of Brownian motors. 

In addition to considering individual models, the 

theory of Brownian motors is aimed at finding 

and identifying the general properties of the 

ratchet effect as an object of its study. 

The most widely used in the theory of 

Brownian motors are double-sine (smooth) and 

sawtooth (piecewise-linear) dependences of 

potential energy. The source of such periodic 

asymmetric electrostatic potential can be a chain 

of collinearly located dipoles. Tasks of the 

research was to find how the ratchet effect will 

behave when the class of the model potential is 

changed from smooth to piecewise linear, and to 

choose the optimal approximation method for 

different ranges of model parameters, which 

would minimize changes in the resulting flux. 
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To compare the ratchet effects created by 

these two types of stationary potentials, a model 

of a stochastic Brownian motor with small 

potential energy fluctuations the by a harmonic 

signal, which has no limitations in the ranges of 

the medium temperature and the frequency of 

fluctuations, was chosen. In this case, the ratchet 

effect can be studied in all modes of operation of 

the motor, and the obtained result can be used in 

various narrower approximations. 

To accomplish the task, two approximation 

methods of double-sine potential by sawtooth 

were considered - the simple (by means of which 

the extremum points are connected by segments) 

and the least squares method (LSM). In general, 

any two asymmetric single-well potentials with 

similar asymmetry can be considered close 

dependences, which, after calculations using the 

same procedure, should give a very close result. 

However, for the theory of Brownian motors, 

their differences under certain conditions can be 

fundamentally important. A simple 

approximation method keeps the height of 

potential barrier and the position of the barrier 

and the well, i.e., if the ratchet effect is “started 

up” precisely by the barrier value and its location 

relative to the potential well on the spatial 

period, then this method should give a similar 

behavior of the flux magnitude. The LSM 

method repeats the shape and slopes as closely 

as possible (in fact, the sawtooth potential 

segments model conventional straight-line 

sections of double-sine potential), and if the 

ratchet effect is “launched” throughout the 

spatial period, this method will show a greater 

similarity of results. In addition, different modes 

of operation may have their own peculiarities. 

To visualize general view of the patterns 

from external parameters – temperature βu0 and 

frequency γL2 / D, flux values surfaces generated 

by the double-sine potential with a fixed α = 1/4 

and corresponding sawtooth potential 

constructed by the LSM method were plotted. 

They demonstrated the same nature of the 

dependences – non-monotonic, with a similar 

position of the maximum and a significantly 

larger amplitude for the sawtooth potential (see 

Fig. 3). The next series of two-dimensional 

graphs of sequentially depicted temperature and 

frequency dependences of the flux J (Fig. 4) 

showed that in the region of average values of 

temperature and frequency it is impossible to 

indicate the optimal approximation method due 

to the difference in the position of the maxima 

and the resulting competition of values. But, for 

fixed external parameters, it is sufficient to 

obtain the temperature dependence to determine 

the approximation method. However, in the 

boundary regions, the behavior of the fluxes 

turned out to be more stable: at high 

temperatures for any values of α, the simple 

method gives the best results, and at high 

frequencies – the LSM method. A family of 

graphs of the behavior of fluxes as a function of 

the parameter α (Fig. 5) for different 

temperatures shows that in the high-temperature 

approximation, in principle, replacing the 

potential class greatly distorts the result, and in 

the region of average temperatures for single-

well double sine potentials, the simple method is 

preferable, and with a further decrease 

temperature (βu0 > 4), greater correspondence 

will be shown by the LSM method. A conclusion 

that is important for practical use in calculations 

follows from the diagrams of motor stopping 

points with different stationary potentials 

(Fig. 6): for single-well double sine potentials 

(Fig. 6 a, b), the LSM approximation method 

gives identical dependences, that is, for 

modeling temperature-frequency control, it 

makes no difference what type of potential to 

use; it is important to relate them to each other 

according to the LSM method. And, finally, as a 

result of an additional study of the areas of 

identity and difference flux values generated by 

the double-sine potential with a fixed and 

corresponding sawtooth potential constructed by 

the LSM method, the corresponding contour 

graphs of flux ratios were constructed. The 

performed calculations showed that identical 

values of fluxes are characteristic for the entire 

range of temperatures and high frequencies of 

potential fluctuations, and the biggest differences 

appear at low frequencies of fluctuations and 

especially for the average values of the 

temperature parameter of the environment. 

Physically, this can be explained by the fact that 

with a rapid change of the potential energy form, 

the particle “does not have time” to feel the 

“details” of this form, it reacts to the asymmetry 

“as a whole”, therefore the values of the 

velocities are almost the same in the two 

potential profiles. With slow fluctuations (in the 

adiabatic regime), on the contrary, the form of 

potential barriers and wells “come to the fore”: 

sharp extrema (casp points) of the sawtooth 
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dependence create a much greater “locking 

effect”, and the velocity from sawtooth potential 

is generated by 6 or more times higher than 

double-sine. The low-temperature region is 

characterized by a long stay of particles in the 

potential wells due to difficult thermal activation 

overcoming the barriers, the generated fluxes are 

small, and the influence of the potential shape on 

the motion characteristics is also reduced. 

The works of other authors [30, 31, 38] 

previously concluded that the high-frequency 

limit of motor operation is the most sensitive to 

the shape of the potentials, while we received 

opposite results about identical flux values in 

this region. However, this contradiction can be 

explained by the difference in the formulation of 

the problems: indeed, the high-frequency region 

is sensitive to slopes, therefore the LSM method 

(which preserves slopes) does not distort the 

resulting flux, while the simple method in this 

region makes a big difference. 

Thus, we performed a large-scale 

comparative study of the dependence of the 

behavior of the ratchet effect on the shape of the 

stationary potential profile. First of all, it is 

important for carrying out and optimizing future 

calculations of the diffusion transport 

characteristics along periodic structures of 

various types. Secondly, the results obtained 

made it possible to clarify and expand the 

previously known conclusions about high-

frequency nanotransport and demonstrate the 

areas of parameters that are most sensitive to the 

class of model potential (smooth and containing 

casp points). Finally, this work shows that 

ratchet effects created by related dependences 

(i.e. almost identical conditions) can differ in 

magnitude by several times, which can be used 

in the construction of highly efficient models of 

nanomechanisms.
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Явище ретчет-ефекту забезпечує рух багатьох існуючих в природі молекулярних машин та штучно 

створюваних наномеханізмів, що здатні ініціювати направлений дифузійний рух вздовж періодичних структур. 

Два ключові фактори, необхідні для виникнення ретчет-ефекту, – це наявність асиметрії в системі та 

організація процесу нерівноважних флуктуацій. Асиметрія може створюватись безпосередньо формою 

стаціонарного потенціалу, в полі дії якого організовано однонаправлений рух. Найчастіше зустрічаються 

подвійна синусоїдальна (плавна) і пилоподібна (кусково-лінійна) залежності потенціального профілю. Джерелом 

такої залежності може бути ланцюжок колінеарно розташованих диполів на поверхні твердого тіла. Задачею 

дослідження було знайти, яким чином зміниться ретчет-ефект при заміні класу модельного потенціалу з 

плавного на кусково-лінійний. Для цього було розглянуто два методи апроксимації подвійного синусоїдального 

потенціалу пилоподібним: простий (simple), при якому точки екстремумів з’єднуються прямолінійними 

сегментами та зберігається висота потенціального бар’єра і координати екстремумів, та метод найменших 

квадратів (LSM), що максимально близько моделює нахили плавного потенціалу. Для проведення порівняльного 

аналізу була обрана модель стохастичного броунівського мотора з малими збуреннями потенціальної енергії 

гармонійним сигналом, яка не має обмежень в діапазонах температури середовища та частоти флуктуацій, і 

ретчет-ефект можна досліджувати в усіх режимах роботи мотора. Показано, що за досить високих 

температур для будь-якої асиметрії потенціалів апроксимація методом simple дає кращі результати, а за 

високих частот – метод LSM. Запропоновано алгоритм визначення кращого методу апроксимації в областях 

параметрів, що генерують найбільші значення потоків. Встановлено, що для одноямних подвійних синусоїдальних 

потенціалів апроксимаційний LSM-потенціал дає ідентичні результати температурно-частотних 
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залежностей. Побудовано контурні графіки відносних величин потоків, що демонструють області параметрів 

найбільшого співпадіння (стабільності) ретчет-ефекту та області найбільшої розбіжності. 

Ключові слова: дипольний ланцюжок, орієнтаційно-структурована система на поверхні, керований 

дифузійний транспорт, приповерхневе масоперенесення, броунівські мотори, ретчет-ефект, флуктуації 

потенціалу 
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