Хімія, фізика та технологія поверхні, 2013, 4 (4), 358-365.

Хімія поверхні та поруватість природного і активованого алюмосилікату з монтморилоніту та кліноптілоліту



DOI: https://doi.org/10.15407/hftp04.04.358

L. I. Belchinskaya, L. A. Novikova, V. Yu. Khokhlov, J. Lu Tkhi, M. T. Kartel

Анотація


З використанням ІЧ-спектроскопії та ізоп’єстичного методу вивчено вплив кислотної та лужної активації на хімію поверхні та поруватість природного комбінованого алюмосилікату M45C20, що містить монтморилоніт та кліноптілоліт. Зсуви смуг поглинання в ІЧ-спектрах підтверджують, що і кислотна, і лужна обробка обумовлюють розкриття зв’язків Si–O–Al, яке відбувається завдяки деалюмінації сорбенту та формуванню груп Si–OH. Утворення аморфної фази кремнезему спостерігається при кислотній обробці як результат деструкції октаедричних шарів монтморилоніту. Одержано ізотерми сорбції водяної пари на природному M45C20 (MCnat) та активованих M45C20 кислотою та лугом (MCAc і MCAlk) зразках. Для розрахунку питомої поверхні зразків успішно використана теорія БЕТ. Сорбційна ємність по воді зростає в ряду: MCnat < MCAc < MCAlk. Встановлено, що питома поверхня природного комбінованого алюмосилікатного сорбенту зростає після кислотної та лужної обробки, відповідно в 1.3 та 1.5 рази.

Ключові слова


aluminosilicate; activation; acid and alkaline treatment; surface characteristics

Повний текст:

PDF (English)

Посилання


1. Rashed M. Nageeb. Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater in Organic Pollutants, Moni-toring, Risk and Treatment, InTech Publisher, 2013, 229 p. http://dx.doi.org/10.5772/54048).

2. Rozic M., Cerjan-Stefanovic Š. Croatian clinoptilolite- and montmorillonite-rich tuffs for ammonium removal, Stud. Surf. Sci. Catal., 135 (2001) 371.

3. Manikandan D., Mangalaraja R.V., Ananthakumar S., Sivakumar T. Synthesis of metal intercalated clay catalysts for selective hydrogenation reactions, Catalysis in Industry, 4 (2012) 215.

4. Adams J.M., McCabe R.W. Clay minerals as catalysts. In: Handbook of Clay Science. Developments in Clay Science, Eds. Bergaya F., Theng B.K.G., Lagaly G., Elsevier Ltd. (2006) 547.

5. Trombetta M., Busca G., Lenarda M. et al., Solid acid catalysts from clays: evaluation of surface acidity of mono- and bi-pillared smectites by FT-IR spectroscopy measure-ments, NH3-TPD and catalytic tests, Appl. Catal. A, 193 (2000) 55.

6. Morfis S., Philippopoulos C., Papayannakos N. Application of Al-pillared clay minerals as catalytic carriers for the reaction of NO with CO, Appl. Clay Sci., 13 (1998) 203.

7. Bel’chinskaya L.I. Environment Protecting Technologies for Purification and Utilization of Wastes from Wood Industry, VSFAE: Voronezh, 2000. – 204 p. (in Russian).

8. Schoonheydt R.A., Johnston C.T. Surface and interface chemistry of clay minerals. In: Handbook of Clay Science. Developments in Clay Science, Eds. Bergaya F., Theng B.K.G., Lagaly G., Elsevier Ltd. (2006) 87.

9. Tarasevich Yu.I., Structure and Surface Chemistry of Layer Silicates, Naukova Dumka, Kiev, 1975. – 248 p. (in Russian).

10. Osman Maged A.,  Ploetze M.l, Suter Ulrich W. Surface treatment of clay minerals – thermal stability, basal-plane spacing and surface coverage, J. Mater. Chem., 13 (2003) 2359.

11. Moronta A., Luengo J., Ramirez Y. et al. Isomerization of cis-2-butene and trans-2-butene catalyzed by acid- and ion-exchanged smectite-type clays, Appl. Clay Sci., 29 (2005) 117.

12. Neaman A., Pelletier M., Villieras F. The effects of exchanged cations, compression, heating and hydration on textural properties of bulk bentonite and its corresponding purified montmorillonite, Appl. Clay Sci., 22 (2003) 153.

13. Sprynskyy M., Lebedynets M., Zbytniewski R., Namiesnik J. Ammonium removal from aqueous solution by natural zeolites – trans-carpathian mordenite: kinetics, equilibrium and column tests, Sep. Purif. Technol., 46 (2005) 155.

14. Novikova L., Bel’chinskaya L., Roessner F. Effect of treatment with acids on the state of surface of natural clay minerals, Russ. J. Phys. Chem., 80 (2006) 185.

15. Jozefaciuk G., Matyka-Sarzynska D. Effect of acid treatment and alkali treatment on nanopore properties of selected minerals, Clays Clay Miner., 54 (2006) 220.

16. Oztop B., Shahwan T. Modification of a montmorillonite-illite clay using alkaline hydrothermal treatment and its application for the removal of aqueous Cs+ ions, J. Colloid Interface Sci., 295 (2006) 303-309.

17. Peng Liu. Polymer modified clay minerals: A review, Appl. Clay Sci., 38 (2007) 64 (DOI: 10.1016/j.clay.2007.01.004).

18. Hongping He, Qi Tao, Jianxi Zhu et al. Silylation of clay mineral surfaces, Appl. Clay Sci., 71 (2013) 15.

19. Lagaly G., Beneke K. Intercalation and exchange reactions of clay minerals and non-clay layer compounds, Colloid. Polym. Sci., 269 (1991) 1198.

20. Pinnavaia T.J. Intercalated clay catalysts, Science, 220 (1983) 365 (DOI: 10.1126/science.220.4595.365).

21. Khodosova N.A., Belchinskaya L.I., Petukhova G.A., Voishcheva O.V. Adsorption of formaldehyde from gaseous phase by thermally activated nanoporous celite, Prot. Met. Phys. Chem. Surf., 46 (2010) 90.

22. Bel’chinskaya L.I., Novikova L.A. Adsorption of acetic acid on natural and alkali activated montmorillonite, Sorb. Khromatogr. Protsessy, 7 (2007) 741 (in Russian).

23. Katorgina E.M., Kynin A.T., Lysenko A.A., Teploukhova M.V. Methodological Instructive  Regulations on Performing Education Research Work on Physical and Colloidal Chemistry, St.-Petersburg, 1995. – 142 p. (in Russian).

24. Selemenev V.F. Practical guide to ion-exchange, Publishing House of Voronezh State University, Voronezh, 2004, 160 p. (in Russian).

25. Tarasevich Yu.I. Structure and Surface Chemistry of Laminar Silicates, Naukova Dumka, Kiev, 1988, 248 p. (in Russian).

26. Kiselev A.V., Lygin V.I. Infrared Spectra of Surface Compounds, Nauka, Moscow, 1972, 459 p. (in Russian).

27. Breen C., Madejová J., Komadel P. Correlation of catalytic activity with infra-red, 29Si MAS NMR and acidity data for HCl-treated fine fractions of montmorillonites, Appl. Clay Sci., 10 (1995) 219.

28. Madejová J. et al. Comparative FT-IR study of the structural modifications during acid treatment of dioctahedral smectites and hectorite, Spectrochimica Acta, 54 (1998) 1397.

29. Mdivnishvili O.M. Crystallochemical Foundations of Controlling the Properties of Natural Sorbents, Metsniereba, Tbilisi, 1978, 268 p. (in Russian).

30. Podolsky A.A., Stekolnikov K.E., Kotov V.V. Hydration and absorption ability of clay minerals, Sorb. Khromatogr. Protsessy, 4 (2004) 182 (in Russian).

31. Chelishchev N.F., Volodin V.F., Kryukov V.L. Ion Exchange Properties of Natural High Silica Zeolites, Nauka, Moscow, 1988, 129 p. (in Russian).

32. Greg S., Sing K. Adsorption, Specific Surface, Porosity, Mir, Moscow, 1984, 310 p. (in Russian).

33. Jozefaciuk G. Effect of acid and alkali treatments on surface-charge properties of selected minerals, Clays and Clay Minerals, 50 (2002) 647.




DOI: https://doi.org/10.15407/hftp04.04.358

Copyright (©) 2013 L. I. Belchinskaya, L. A. Novikova, V. Yu. Khokhlov, J. Lu Tkhi, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.