УДК 661.682:546.59:544.52

УСИЛЕНИЕ ПОГЛОЩЕНИЯ И ФЛУОРЕСЦЕНЦИИ МОЛЕКУЛ РОДАМИНА 6Ж ВБЛИЗИ НАНОЧАСТИЦ ЗОЛОТА В МАТРИЦЕ SiO₂

Ю.П. Муха¹, А.М. Еременко^{1*}, Н.П. Смирнова¹, М.Я. Валах², В.И. Джаган²

¹ Институт химии поверхности им. А.А. Чуйко Национальной академии наук Украины ул. Генерала Наумова 17, Киев 03164, Украина ² Институт физики полупроводников им. В.Е. Лашкарева Национальной академии наук Украины просп. Науки 41, Киев 03028, Украина

Рассмотрено влияние наночастиц золота в матрице высокодисперсного кремнезема, содержащей 0,004–0,06 мас. % металла, на спектральное поведение адсорбированного красителя родамина 6Ж. С увеличением количества наночастиц золота на поверхности кремнезема интенсивность спектра поглощения родамина 6Ж увеличивается более чем в 2 раза. Обнаружено также усиление интенсивности флуоресценции красителя на поверхности SiO₂, содержащей 0,02 мас. % металла.

ВВЕДЕНИЕ

Наночастицы благородных металлов привлекают внимание исследователей благодаря их уникальным свойствам и множеству областей применения, в частности, в химическом анализе, в материалах для сенсоров, при лечении злокачественных образований, в качестве бактерицидных материалов, для усиленного поверхностью комбинационного рассеяния и др. [1–4]. Изучение эффектов усиления флуоресценции органических красителей, находящихся вблизи наночастиц, особенно актуально в связи с возможностью повышения чувствительности молекулярных маркеров в диагностических системах [5].

Основными процессами деактивации возбужденного состояния флуоресцирующей молекулы вблизи металла являются безызлучательные: 1) перенос заряда, 2) перенос энергии на металл, 3) межмолекулярное взаимодействие, приводящее к тушению свечения, и, собственно, 4) излучательный процесс. Исследования последних лет показали, что влияние поверхностного плазмонного резонанса (ППР) наноразмерного металла на флуорофоры проявляется в том, что интенсивность их излучения может существенно усиливаться вблизи поверхности наночастиц [6]. Несмотря на то, что теоретически обоснована возможность усиления излучения в десятки и сотни раз, экспериментально такое явление наблюдают в единичных случаях, а для гетерогенных систем подобные исследования не проводились.

Стабилизация наночастиц в высокодисперсном кремнеземе (ВДК) позволит создать новые материалы биомедицинского назначения. Их преимущества перед коллоидными препаратами – высокая стабильность, биосовместимость, развитая поверхность ВДК и низкое содержание наночастиц металла.

В данной работе исследовали влияние наночастиц золота в очень низких концентрациях на поверхности ВДК (Au/SiO₂) на спектры поглощения и люминесценции адсорбированного красителя Родамина 6Ж (Р6Ж) (Au 0,004–0,06 мас.%).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы. Для синтеза стабильных наночастиц золота использовали следующие вещества: цетилтриметиламоний бромид (ЦТАБ) (Sigma Aldrich); родамин 6Ж (Aldrich); тетрахлорауратная кислота HAuCl₄ (Aldrich); бензофенон (БФ) (Aldrich); *i*-пропанол ("ч.д.а."). Как носитель наночастиц использовали высокодисперсный пирогенный кремнезем марки А-300 с удельной поверхностью 300 м²/г (Калушский опытно-экспериментальный завод Института химии поверхности им. А.А. Чуйко НАН Украины).

Получение образцов. Au/SiO₂ образцы синтезировали двумя путями: 1) термическое восстановление ионов золота на поверхности ВДК, пропитанного раствором HAuCl₄, при 500°C; 2) адсорбция предварительно приготовленных коллоидных растворов наноразмерного золота на

* контактный автор annaerem@ukr.net

поверхности ВДК при комнатной температуре. Высушивание Au/SiO₂ порошков осуществляли на воздухе при 85°С. Количество металла в обеих сериях составляло 0,004–0,06 мас. %.

Коллоидные растворы наночастиц золота были синтезированы методом фотохимического восстановления ионов металла [7] при УФ-облучении водно-спиртового раствора HAuCl₄ ртутной лампой ($\lambda = 254$ нм) в присутствии мезопористого порошка SiO₂ с адсорбированным БФ в качестве фотокатализатора и стабилизатора ЦТАБ в пятикратном мольном избытке. Общая концентрация металла в коллоиде составляла 1,5·10⁻⁴ моль/л.

Родамин 6Ж адсорбировали количественно на поверхность порошков Au/SiO₂ из водного раствора.

Спектры поглощения растворов регистрировали в УФ и видимой области с помощью спектрофотометра Perkin-Elmer Lambda 35 в кварцевых кюветах длиной 1 см. Для записи спектров диффузного отражения порошков, модифицированных наночастицами золота, использовали интегрирующую сферу Labsphere RSA-PR-20 в диапазоне длин волн 200–1000 нм (стандартный образец сравнения – "Spectralon"). Спектры поглощения порошков были рассчитаны из соответствующих спектров отражения по формуле Кубелки-Мунка.

Электронно-микроскопические изображения порошков кремнезема, модифицированных наночастицами золота, фиксировали с помощью пропускающего электронного микроскопа JOEL JEM-100C с ускоряющим напряжением 100 кВ. Для расчета распределения частиц по размерам использовали программу ImageJ.

Характеристики поверхности модифицированных кремнеземов исследовали по адсорбции азота при помощи сорптометра KELVIN 1042.

Флуоресценцию РбЖ на поверхности Au/SiO₂ порошков на воздухе регистрировали на спектрометре с монохроматором МДР-23, оборудованным твердотельным диодным лазером с длиной волны 532 нм, мощностью 10 мВт. Облучаемый образец размещался между двумя стеклами.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Методом фотохимического восстановления, описанного в [7], получены стабильные наночастицы Au в коллоидном растворе, характеризующиеся сильной полосой поглощения ППР в видимом диапазоне с максимумом при 530 нм. Средний диаметр синтезированных наночастиц Аu, рассчитанный из снимков, полученных методом просвечивающей электронной микроскопии (ПЭМ), составляет 20 нм. Синтезированные коллоиды наночастиц адсорбировали на поверхности предварительно прокаленного ВДК. Полученные композиты Au/SiO₂ содержат небольшие концентрации металла (0,004–0,06 мас.%). Гомогенное распределение наночастиц золота по поверхности ВДК подтверждается снимками сканирующей электронной микроскопии (СЭМ) (рис. 1). Положение максимума полосы ППР в оптических спектрах соответствует таковому в спектрах исходного коллоида.

Методом термического восстановления также получены стабильные наночастицы золота на поверхности ВДК в указанных количествах. Наночастицы необратимо связываются с поверхностью кремнезема [8]. В спектрах рентгеновского излучения порошков наблюдались два рефлекса кристаллов Au при $2\theta = 38$ и 44° . Эти пики соответствуют (111) и (200) плоскостям металла в кубической модификации.

Площадь поверхности всех образцов модифицированных кремнеземов составляет ~300 м²/г. С увеличением процентного содержания золота происходит уменьшение объема микропор, образующихся в результате высушивания водных суспензий непористого аэросила (табл. 1). Вероятно, наночастицы золота локализуются в области высокой поверхностной энергии с наибольшим количеством дефектов, в частности на поверхности стенок микропор [9].

Табл. 1. Характеристики поверхности Au/SiO₂ композитов

Порошок	SiO ₂	0,004%Au /SiO ₂	0,02% Au / SiO ₂	0,06% Au / SiO ₂
площадь поверхности БЕТ, м ² /г	296,98	297,37	295,95	294,14
объем мик- ропор, мм ³ /г	9,06	5,65	0,00	0,00

При использовании обоих методов синтеза (термического и фотохимического) наночастицы в составе Au/SiO2 имеют одинаковые спектры (рис. 2). оптические Порошки Au/SiO₂ сохраняют интенсивную яркую окраску в течение года и более. В случае наибольшей концентрации золота 0,06 мас.% на SiO₂ в спектрах поглощения обоих типов частиц наблюдаем смещение максимума ППР на 10 нм в длинноволновую область относительно максимумов полос для других образцов. При таких концентрациях металла происходят процессы диффузии и агрегации наночастиц.

Рис. 2. Спектры диффузного отражения Au/SiO₂ порошков, полученных методом термического (*a*) и фотохимического (*б*) восстановления, с различным содержанием металла

Таким образом, получены и исследованы композитные материалы Au/SiO_2 на основе ВДК A-300 с различным содержанием металла. Наночастицы золота на развитой поверхности ВДК стабильны и устойчивы к окислению, что позволяет использовать их для катализа, фотоники, электроники, в качестве химических и биологических сенсоров.

Спектроскопия красителя родамина 6Ж на поверхности Au/SiO₂. Спектры поглощения систем РбЖ/Au/SiO₂. Повышение содержания золота в образцах обеих серий способствует увеличению количества адсорбированного красителя на поверхности Au/SiO₂, что может быть связанно с изменением морфологии и химии поверхности кремнезема. В табл. 2 отражены равновесные концентрации красителя на поверхности.

Табл. 2.	Количество	красителя	на	поверхности	
	Au/SiO ₂ после установления равновесия				

	Концентрация Р6Ж, моль/г				
Образец	0% Au /SiO ₂	0,004% Au /SiO ₂	0,02% Au /SiO ₂		
Au/SiO ₂ термовосст.	1,235.10-4	1,756.10-4	1,235.10-4		
Au/SiO ₂ фотовосст.	6,8·10 ⁻⁵	7,46.10-5	8,43·10 ⁻⁵		

В соответствии с данными табл. 2, присутствие наночастиц на поверхности SiO₂ способствует повышению адсорбционной емкости по отношению к РбЖ. Можно сделать предположение о преимущественной локализации РбЖ на поверхности SiO₂ вблизи наночастиц золота. При этом, исходя из спектров диффузного отражения образцов Au/SiO₂/РбЖ, при наличии золота в системе происходит значительное усиление интенсивности спектра поглощения РбЖ, пропорциональное росту концентрации металла от 0,004 до 0,06 мас.% (рис 3).

Рис. 3. Сравнение спектров поглощения Р6Ж в системах Р6Ж/Au/SiO₂ в зависимости концентрации металла и красителя: *1* – С(Р6Ж) = 0,5 · 10⁻⁶ моль/г, *2* – 1 · 10⁻⁶ моль/г, *3* – 1,5 · 10⁻⁶ моль/г, *4* – 2 · 10⁻⁶ моль/г

Подобное усиление интенсивности спектра поглощения красителя связано с влиянием электромагнитного поля наночастиц. Возбуждение многочисленных плазмонов в частице провоцирует эффективное рассеяние света и образование усиленного электромагнитного поля вблизи поверхности наночастиц. Рассеянный свет может перепоглощаться фотоактивным компонентом системы РбЖ, аналогично [10], чему способствует перекрывание полос поглощения родамина и ППР металла, тем самым значительно увеличивая количество поглощенного света системой в целом. Такие материалы могут быть использованы для повышения чувствительности диагностических систем.

Флуоресценция родамина 6Ж на поверхности ВДК, модифицированного наночастицами. Обнаружено усиление интенсивности флуоресценции Р6Ж при строго определенном соотношении Р6Ж/Аи на поверхности SiO₂. Изменение концентрации наночастиц как в сторону уменьшения, так и в сторону увеличения относительно 0,02% сопровождается тушением излучения красителя. На поверхности гетерогенной системы Au/SiO₂ присутствуют несколько флуоресцирующих состояний адсорбированного РбЖ [11]. Это существенно осложняет выявление и интерпретацию взаимодействия РбЖ с наночастицами золота, т.к. вклад в общее свечение дает как интенсивность фотолюминесценции мономеров на SiO₂, так и тушение люминисценции наночастицами металла. Зависимость интенсивности флуоресценции от концентрации красителя на образцах Au/SiO₂ с разным содержанием металла носит нелинейный характер (рис. 4).

Рис. 4. Зависимость интенсивности флуоресценции Р6Ж в системах Р6Ж/Au/SiO₂ от концентрации красителя при возрастании концентрации металла: 1 – Au 0%, 2 – Au 0,004%, 3 – Au 0,02%, 4 – Au 0,06%

При достижении концентрации Р6Ж на поверхности более 10⁻⁶ моль/г происходит концентрационное тушение флуоресценции красителя. Наличие даже небольшого количества золота существенно влияет на оптические свойства системы. Например, величина интенсивности флуоресценции для образцов, содержащих 0,06% золота, была значительно меньше, чем на чистом SiO₂. Повышение интенсивности излучения Р6Ж, воспроизводимое на разных сериях образцов, происходит для образца с содержанием металла 0,02% в

области концентраций 0,5–2·10⁻⁶ моль/г. Полученные результаты воспроизводятся на обеих сериях систем Au/SiO₂.

Молекулы РбЖ при адсорбции равномерно распределяются по поверхности, размещаясь вокруг наночастиц, и в определенном концентрационном диапазоне молекулы красителя и наночастиц золота оказываются на расстояниях, оптимальных для процессов обмена энергиями и усиления флуоресценции. Данный эффект может маскироваться вследствие наложения свечения молекул, находящихся в других флуоресцирующих состояниях.

выводы

Получены стабильные наночастицы золота на поверхности высокодисперсного кремнезема путем термического восстановления и адсорбции из предварительно синтезированных коллоидных растворов. Усиление интенсивности поглощения в спектрах Родамина 6Ж на поверхности композитов Au/SiO₂ связано с перепоглощением красителем рассеянного света от наночастиц. Обнаружено усиление излучения Родамина 6Ж вблизи наночастиц в определенном концентрационном интервале (0,02% Au, 0,5–2·10⁻⁶ моль/г Р6Ж), при котором проявляется усиление флуоресценции Родамина 6Ж.

ЛИТЕРАТУРА

- Haes A.J., Van Duyne R.P. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles // J. Am. Chem. Soc. – 2002. – V. 124, N 5. – P. 10596–10604.
- Jain P. K., Lee K. S., El-Sayed I. H., El-Sayed M. A. Calculated absorption and scattering properties of gold nanoparticles of different shape and composition: Applications in biological imaging and biomedicine // J. Phys. Chem. B. – 2006. – V. 110, N 14. – P. 7238–7248.
- Pal S., Tak Y., Song J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gramnegative bacterium *Escherichia coli* // Appl. Environ. Microbiol. – 2007. – V. 73, N 6. – P. 1712–1720.
- 4. *Tian Z.Q.* Surface-enhanced raman spectroscopy: advancements and applications // J. Ram. Spect. 2005. V. 36, N 6–7. P. 466–470.
- 5. *Lakowicz J.R.* Principles of Fluorescence Spectroscopy. Berlin: Springer, 2006. 954 p.

- Hua X.M., Gersten J.I., Nitzan A. Theory of energy transfer between molecules near solid state particles // J. Chem Phys. 1985. V. 83, N 7. P. 3650–3659.
- Mukha I., Eremenko A., Korchak G., Michienkova A. Antibacterial action and physicochemical properties of stabilized silver and gold nanostructures on the surface of disperse silica // J. Water Resource and Protection. – 2010. – V. 2 – P. 131–136.
- Еременко А.М., Смирнова Н.П., Муха Ю.П., Яшан Г.Р. Наночастицы серебра и золота в кремнеземных матрицах: синтез, свойства и применение // Теор. эксперим. химия. – 2010. – Т. 46, № 2 – С. 67–86.
- Sen T., Jana S., Koner S., Patra A. Energy transfer between confined dye and surface attached Au nanoparticles of mesoporous silica // J. Phys. Chem. C. – 2010. – V. 114, N 2 – P. 707–714.
- Akimov Yu.A., Koh W.S., Ostrikov K. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes // Optics express. – 2009. – V. 17, N 12 – P. 10195–10205.
- 11. Муха Ю.П., Еременко А.М., Смирнова Н.П. и др. Влияние наночастиц золота в матрице SiO₂ на спектральные свойства и фотохимию адсорбированных молекул Родамина 6Ж и провитамина D // Наносистемы, наноматериалы, нанотехнологии. – 2010. – Т. 8, № 4 – С. 813–828.

Поступила 31.05.2011, принята 06.06.2011

Посилення поглинання і флуоресценції молекул родаміну 6Ж поблизу наночастинок золота в матриці SiO₂

Ю.П. Муха, Г.М. Єременко, Н.П. Смірнова, М.Я. Валах, В.І. Джаган

Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України вул. Генерала Наумова 17, Київ 03164, Україна, annaerem@ukr.net Інститут фізики напівпровідників ім. В.Є. Лашкарьова Національної академії наук України, просп. Науки 41, Київ 03028, Україна

Розглянуто вплив наночастинок золота в матриці високодисперсного кремнезему, який містить 0,004–0,06 мас.% металу, на спектральну поведінку адсорбованого барвника родаміну 6Ж. Зі збільшенням кількості наночастинок золота на поверхні кремнезему інтенсивність спектра поглинання родаміну 6Ж підвищується більш ніж в 2 рази. Виявлено підсилення випромінювання барвника на поверхні SiO₂, яка містить 0,02 мас. % металу.

The Absorption and Fluorescence Enhancement of Rhodamine 6G Molecules near Gold Nanoparticles in SiO₂ Matrix

I. Mukha, A. Eremenko, N. Smirnova, M. Valakh, V. Dzhagan

Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine 17 General Naumov Street, Kyiv 03164, Ukraine, annaerem@ukr.net Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine 41 Nauky Avenue, Kyiv 03028, Ukraine

The influence of gold nanoparticles in the high disperse silica matrix containing 0.004–0.06 wt.% of metal on the spectral behavior of adsorbed dye Rhodamine 6G is considered. Increasing the quantity of gold nanoparticles on the silica surface enhances the intensity of dye absorption spectra more than 2 times. The fluorescence enhancing of dye on the SiO₂ surface containing 0.02 wt. % of metal was observed.