УДК 544.72

СИНТЕЗ НАНОРАЗМЕРНОГО SnO₂ НА ПОВЕРХНОСТИ ВЫСОКОДИСПЕРСНОГО КРЕМНЕЗЕМА

Е.М. Пахлов¹*, Н.В. Гузенко¹, В.И. Зарко¹, М.Л. Малышева²

¹ Институт химии поверхности им. А.А. Чуйко Национальной академии наук Украины ул. Генерала Наумова, 17, Киев, 03164, Украина ² Киевский национальный университет имени Тараса Шевченко ул. Владимирская, 62а, Киев, 01033, Украина

Методом низкотемпературного гидролиза SnCl₄ на поверхности высокодисперсного кремнезема с последующей термической обработкой синтезировали наноразмерный SnO₂. Использовался высокодисперсный кремнезем с удельной поверхностью 120 и 300 $m^2/г$. Установлено влияние кремнеземной матрицы на формирование кристаллической структуры диоксида олова при термообработке. Методами рентгенофазового анализа, ИК- и лазерной корреляционной спектроскопии исследованы свойства полученных оксидных систем SnO₂/SiO₂.

ВВЕДЕНИЕ

В настоящее время наноразмерные и нанокристаллические оксидные системы широко используются в различных отраслях науки и техники [1-4]. Для синтеза новых оксидных систем на основе кремнезема применяются разные методы, позволяющие сформировать наноразмерные частицы оксидов [1, 5-8]. Для синтеза системы SnO₂/SiO₂ мы использовали метод контролируемого гидролиза SnCl₄ на поверхности высокодисперсного кремнезема с удельной поверхностью 120 и 300 м²/г (А120 и А300 соответственно). Целью работы являлось получение наноразмерного SnO₂, изучение влияния кремнеземной матрицы и термообработки на процессы формирования диоксида олова разной степени кристалличности, а также на электрокинетические свойства полученной системы SnO₂/SiO₂.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез кремнеземов, содержащих на поверхности SnO₂, проводили методом низкотемпературного гидролиза. Количество SnCl₄ и H₂O рассчитывалось по схемам (1) и (2) с учетом заданной концентрации SnO₂ на поверхности кремнезема, которая в образцах для A300 составляла 5, 15 и 30 мас. %, а для A120 – 15 и 30 мас. %:

$$[\equiv SiOH]_{n} + SnCl_{4} \rightarrow [\equiv SiO]_{n}SnCl_{4-n} + nHCl, \qquad (1)$$
$$[\equiv SiO]_{n}SnCl_{4-n} + (4-n)H_{2}O \rightarrow$$

$$\rightarrow$$
[=SiO]_nSn(OH)_{4-n}+(4-n)HCl, где n=1, 2. (2)

Синтез проводили в реакторе с мешалкой, в который загружали 40 г высокодисперсного кремнезема, предварительно прогретого при

* контактный автор *pexim@ukr.net* ХФТП 2011. Т. 2. № 4 450 °С в течение 4 ч. В реактор при комнатной температуре и постоянном перемешивании вводили расчетное количество воды и через 1 ч хлорид олова. Реакционную массу перемешивали в течение 1,5 ч, а затем реактор нагревали до 100 °С и перемешивали при температуре реакции еще 1,5 ч. В конце синтеза (~0,5 ч) реактор продували воздухом для удаления HCl. Охлаждали реактор также с продувкой воздухом.

Синтезированные образцы дополнительно прогревали в сушильном шкафу 2 ч при 100–105 °С для удаления остатков соляной кислоты. Для формирования кристаллической фазы SnO₂ небольшое количество образца прокаливали в муфельной печи в течение 2 ч при 600 °С.

Дифрактограммы были записаны на дифрактометре ДРОН-4-07 в излучении CuK_{α} с Ni фильтром в отраженном пучке. Размеры кристаллитов рассчитывали по уравнению Шеррера $\langle L \rangle = k\lambda/\beta cos\theta$ [9].

ИК-спектры синтезированных образцов SnO₂/SiO₂ регистрировали на спектрофотометре SPECORD M80 в диапазоне 1200–4000 см⁻¹ в режиме пропускания. Исследования образцов проводили на тонких пластинках массой 25±1 мг.

Исследование дисперсности 0,2 % водных суспензий синтезированных оксидных систем и их электрокинетических характеристик осуществлялось методом лазерной корреляционной спектроскопии на приборе Malvern-3000.

Состав синтезированных образцов, удельная поверхность и результаты рентгенофазового анализа приведены в таблице.

тионици. тириктернетный синтезпровинных обризцов					
№	Oбразец	Содержание* SnO ₂ , мас. %	Ренттено- фазовый анализ для SnO ₂	Удельная поверх- ность S _{ую} m ² /г	Примечания
		на г	юверхности А	A300	
1	SnSil 5-300	5	рентгено- аморфный	259,5	
2	SnSil 5-600	5	рентгено- аморфный	296	прогретый при 600 °C 2 ч
3	SnSil 15-300	15	рентгено- аморфный	261	-
4	SnSil 15-600	15	размер кристал- литов 10-15 нм	277	прогретый при 600 °C 2 ч
5	SnSil 30-300	30	рентгено- аморфный	255	
6	SnSil 30-600	30	размер кристал- литов 10-15 нм	279	прогретый при 600 °C 2 ч
на поверхности А120					
7	SnSil 15	15	рентгено- аморфный	110	
8	SnSil 15(600)	15	рентгено- аморфный	122	прогретый при 600 °C 2 ч
9	SnSil 30	30	рентгено- аморфный	106	
10	SnSil 30(600)	30	рентгено- аморфный	129	прогретый при 600 °C 2 ч

Е.М. Пахлов, Н.В. Гузенко, В.И. Зарко, М.Л. Малышева

Таблица. Характеристики синтезированных образцов

* - расчетные значения

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В ИК-спектрах синтезированных образцов на основе А300 наблюдается большая интенсивность полосы поглощения силанольных групп (3750 см⁻¹), которая почти не отличается от интенсивности полосы Si-OH исходного кремнезема и не зависит от концентрации введенного SnO₂, что может свидетельствовать об отсутствии связей Si–O–Sn (рис. 1a) в системе SnO₂/SiO₂. В то же время снижение интенсивности полосы поглощения силанольных групп у образцов с содержанием 15 и 30 мас. % SnO₂, синтезированных на кремнеземе А120, по отношению к интенсивности этой полосы исходного SiO2 может указывать на образование химической связи поверхности кремнезема с SnO₂ (рис. 16). Однако это предположение требует дальнейшего исследования.

На поверхности кремнезема SnO_2 находится в аморфном состоянии на обеих матрицах SiO_2 (A120 и A300). Прогрев при 600 °C систем $SnO_2/SiO_2(A120)$ и системы $SnO_2/SiO_2(A300)$ с 5 мас. % SnO_2 , не приводит к появлению кристаллической структуры SnO_2 , но в прогретых системах $SnO_2/SiO_2(A300)$, содержащих 15 и 30 мас. % SnO_2 , уже образуется наноразмерная (10–15 нм) кристаллическая структура (рис. $2a, \delta$).

Рис. 1. ИК-спектры системы SnO₂/SiO₂(A300) (*a*) и SnO₂/SiO₂(A120) (*б*) для образцов с концентрацией 15 мас. % SnO₂: исходные кремнеземы (*1*), синтезированные образцы: исходные (*2*) и прогретые при 600 °C (*3*)

Рис. 2. Дифрактограммы систем SnO₂/SiO₂(A120) (*a*) и SnO₂/SiO₂(A300) (*b*) с содержанием 15 мас. % SnO₂

Можно предположить, что фактором, стабилизирующим аморфную структуру SnO₂ в системе SnO₂/SiO₂(A120) является образование связей Si–O–Sn в поверхностном слое кремнезема.

Изменение удельной поверхности (S_{ya}) систем SnO_2/SiO_2 приведено на рис. 3. Для обеих матриц наблюдается уменьшение S_{ya} с увеличением содержания SnO_2 на поверхности кремнезема. Прогрев образцов на воздухе при 600 °C в течение 2 ч приводит к росту S_{ya} по сравнению с исходными, а для системы SnO_2/SiO_2 (A120) величина удельной поверхности прогретых образцов даже выше, чем S_{ya} исходного A120 (рис. 3*a*).

Рис. 3. Зависимость удельной поверхности систем SnO₂/SiO₂(A120) (*a*) и SnO₂/SiO₂(A300) (*б*) от содержания SnO₂ для исходных (*1*) и прогретых при 600 °C (*2*) образцов

Согласно данным, полученным методом лазерной корреляционной спектроскопии (ЛКС), для обеих систем $SnO_2/SiO_2(A120)$ и $SnO_2/SiO_2(A300)$ в ЛКС-спектрах наблюдается бифазное распределение частиц по размерам (рис. 4), а эффективный диаметр ($D_{3\phi}$) систем увеличивается с возрастанием содержания SnO_2 на поверхности кремнезема.При этом величина $D_{3\phi}$ для непрогретых систем всегда меньше, чем для систем, прогретых при 600 °С.

Расположение синтезированного SnO_2 исключительно на поверхности A120 и A300 подтверждается данными по измерению дзетапотенциала систем $SnO_2/SiO_2(A120)$ и $SnO_2/SiO_2(A300)$ (рис. $5a, \delta$).

Рис. 4. Распределение объема частиц по размерам, полученное методом ЛКС, для образцов SnO₂/SiO₂ (A300), прогретых при 600 °C с содержанием SnO₂, мас. %: *a* – 5; *б* – 15; *в* – 30

Рис. 5. Зависимость дзета-потенциала системы SnO₂/SiO₂(A300) от величины pH для исходных (*a*) и прогретых при 600 °С (*б*) образцов

При возрастании содержания SnO₂ на поверхности кремнезема величина pH точки нулевого заряда системы SnO₂/SiO₂ последовательно смещается от 2,2 до 5. Причем это смещение больше для непрогретых систем (рис. 5), поскольку прогрев способствует формированию более крупных кластеров SnO₂ (при $C_{SnO2} \ge 15$ мас. % переходящих в кристаллическое состояние), что также подтверждается данными ИК-спектроскопии и ростом величины $D_{эф}$ частиц прогретых наноразмерных оксидных систем SnO₂/SiO₂(A300).

ВЫВОДЫ

Установлено, что в прогретых системах SnO₂/SiO₂(A300), содержащих 15 и 30 мас. % SnO₂, образуется наноразмерная (10–15 нм) кристаллическая структура SnO₂. Для обеих систем SnO₂/SiO₂(A120) и SnO₂/SiO₂(A300) в ЛКС-спектрах наблюдается бифазное распределение частиц по размерам, а эффективный диаметр ($D_{3\phi}$) частиц возрастает при увеличении содержания SnO₂ на поверхности кремнезема. При этом величина $D_{3\phi}$ для непрогретых систем всегда меньше, чем для систем, прогретых при 600 °C.

Эта работа поддержана Европейским Обществом Marie Curie International Research Staff Exchange Scheme (IRSES), проект № 230790.

ЛИТЕРАТУРА

1. Горбик П.П, Дадыкин А.А., Дубровин И.В., Филоненко М.Н. Низкополевая электронная эмиссия с квантоворазмерных структур оксида цинка // Химия, физика и технология поверхности. – 2006. – Вып. 11– 12. – С. 261–270.

- 2. Brambilla G., Pruneri V., Reekie L. et al. High photosensitivity in SnO₂/SiO₂ optical fibers // Fiber Integr. Opt. 2001. V. 20, N 6. P. 553–564.
- 3. Румянцева М.Н., Сафонова О.В., Булова М.Н. Газочувствительные материалы на основе диоксида олова // Сенсор. – 2003. – № 2. – С. 29–34.
- 4. Генкина Е.А., Малеваный С.М., Панов Э.В. Электрические и сенсорные свойства нанокристаллических фаз диоксида олова, допированных Мо, Ві, Рb. Влияние условий синтеза, температуры и состава газовой атмосферы // Химия, физика и технология поверхности. 2007. Вып. 13. С. 152–158.
- Feng Y.S., Zhou S.M, Li Y., Zhang L.D. Preparation of the SnO₂/SiO₂ xerogel with a large specific surface area // Mater. Lett. – 2003. – V. 57. – P. 2409–2412.
- 6. *Borysenko M.V., Gun'ko V.M., Dyachenko A.G. et al.* CVD-zirconia on fumed silica and silica gel // Appl. Surf. Sci. – 2005. – V. 242. – P. 1–12.
- Chiodini N., Paleari A., Spinolo G., Crespi P. Photorefractivity in SnO₂/SiO₂ glass-ceramics by visible light // J. Non-Cryst. Solids. – 2003. – V. 322. – P. 266–
- 8. **Tri**coli A., Graf M., Pratsinis S.E. Optimal doping for enhanced SnO₂ sensitivity and thermal stability // European Aerosol Conference (9–14 Sept. 2007, Salzburg, Austria). – Abstract LP13.
- 9. Оранская Е.И., Горников Ю.И., Фесенко Т.В. Автоматизированная методика определения средних размеров кристаллитов поликристаллических твердых тел // Заводская лаборатория. – 1994. – № 1. – С. 28–30.

Поступила 11.05.2011, принята 06.06.2011

Синтез нанорозмірного SnO₂ на поверхні високодисперсного кремнезему Є.М. Пахлов, Н.В. Гузенко, В.І. Зарко, М.Л. Малишева

Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України

вул. Генерала Наумова, 17, Київ, 03164, Україна, pexim@ukr.net

Київський національний університет імені Тараса Шевченка

вул. Володимирська, 62а, Київ, 01033, Україна

Синтезовано нанорозмірний SnO₂ методом низькотемпературного гідролізу SnCl₄ на поверхні високодисперсного кремнезему з наступним прожарюванням при 600 °C. Як носії використовувались зразки кремнеземів з питомою поверхнею 120 і 300 $m^2/г$. Встановлено вплив кремнеземного носія на формування кристалічної структури діоксиду олова при термічній обробці. Досліджено властивості синтезованих оксидних систем SnO₂/SiO₂ методами рентгенофазового аналізу, IЧ- та лазерної кореляційної спектроскопії.

Synthesis of nanosized SnO₂ on fine silica surface E.M. Pakhlov, N.V. Guzenko, V.I. Zarko, M.L. Malysheva

Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine

17 General Naumov Str., Kyiv, 03164, Ukraine, pexim@ukr.net

Taras Shevchenko National University of Kyiv

62a Volodymyrs'ka Str., Kyiv, 01033, Ukraine

The nanoparticles of SnO_2 have been synthesized by low temperature hydrolysis of $SnCl_4$ on silica surface with subsequent calcination at 600 °C. Silica samples with specific surface area of 120 and 300 m²/g were used as carriers. Silica matrix has been found to effect on the formation of tin dioxide crystal structure under heat treatment. The properties of the SnO_2/SiO_2 oxide systems synthesized have been examined by means of XRD analysis, IR and the laser correlation spectroscopy.