УДК 544.6.018:544.72

doi: 10.15407/hftp12.03.226

С.П. Куксенко, Г.О. Каленюк, Ю.О. Тарасенко, М.Т. Картель

ТРИЄДНІСТЬ «ЕЛЕКТРОД–ІЗОЛЮЮЧИЙ ПОЛІФУНКЦІОНАЛЬНИЙ ШАР–ЕЛЕКТРОЛІТ» – ПІДҐРУНТЯ ДЛЯ ВИКОРИСТАННЯ КОНВЕРСІЙНИХ ТИПІВ РЕАКЦІЙ У ЛІТІЙ–ІОННИХ АКУМУЛЯТОРАХ

Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України вул. Генерала Наумова, 17, Київ, 03164, Україна, E-mail: sergii.kuksenko@nas.gov.ua

Вирішенням проблеми негативного впливу на екологію споживання викопного палива є застосування електрохімічних джерел енергії. Висвітлена особлива привабливість літієвих джерел струму та показана необхідность розробки нових дешевих електродних матеріалів й електролітів з унікальними властивостями. Розглянуто особливості поведінки літію та формування на його поверхні при контакті з рідким органічним електролітом шару продуктів реакцій. Проведено аналіз основних проблем та шляхів їхнього вирішення при використанні конверсійних електродів II типу для літій-іонних акумуляторів. Наголошено на необхідності використання при розробці нових електродних матеріалів таких параметрів, як навантажувальна та накопичена необоротні ємності електродів. Тріада «електрод – ізолюючий поліфункціональний шар – електроліт» розглядається як засади системного підходу до створення нових поколінь літієвих джерел струму. Запропоновані оптимальні сценарії формування ефективного ізолюючого поліфункціонального шару на поверхні електродів при контакті з електролітом. Описані переваги електролітів на основі фторетиленкарбонату із сінергічно діючими добавками вініленкарбонату та етиленсульфіту. Розглянута нова стратегія застосування «вторинних» наноматеріалів кремнію із запобіганням прямого контакту його поверхні із електролітом. Показано, що ізолюючий поліфункціональний шар є динамічною системою, що самоорганізується через нестабільний стан у стабільний. Описана електрохімічна поведінка електродів із нанокомпозитами кремнію з високою навантажувальною та низькою накопиченою необоротною ємностями.

Ключові слова: літій, алюміній, кремній, графіт, збагачений вуглецем оксикарбід кремнію (склоподібний вуглець), графен, фторетиленкарбонат, полімерні зв'язуючи на водній основі, негативні конверсійні електроди, рідкі органічні електроліти, добавки до електролітів, ізолюючий поліфункціональний шар, навантажувальна ємність, накопичена необоротна ємність, літій-іонні акумулятори

"Batteries are unique ... living, dynamic systems that respond to their environment ... not observed by with other electrical components".

Per Bro, Sam Levy

ВСТУП. ОСНОВНІ ЕЛЕКТРОХІМІЧНІ ПАРАМЕТРИ ХІМІЧНИХ ДЖЕРЕЛ СТРУМУ

Споживання енергії, виробленої з викопного палива, негативно впливає на екологію та світову економіку. Близько третини його використовується людством на транспортні засоби. Ще у 2010 р. загальна кількість автомобілів у світі перевищила мільярд. Альтернативою цьому є перехід на електрохімічну енергію та електромобілі [1–7].

Електрохімічними джерелами енергії є *паливні елементи, хімічні джерела струму* (ХДС) первинні – гальванічні елементи та вторинні – електрохімічні акумулятори (ЕА), електрохімічні конденсатори (а також гибрідні пристрої, які об'єднують їхні функції [8–11]). Хоча механізми перетворення та зберігання енергії у них різні, вони мають загальну особливість – електрохімічні процеси відбуваються на межі поділу фаз «електрод | електроліт» із окремим перенесенням електронів та іонів.

Наявність контакту електродів електролітом забезпечує їхню постійну готовність до розряду, але при цьому створює саморозряду як термодинамічно умови неминучого процесу. Наприклад, для свинцевого акумулятора (CA) системи Pb | H₂SO₄ | PbO₂ утворення продуктів розряду відбувається за безпосередньої участі електроліту – сірчаної кислоти:

$$Pb + PbO_2 + 2H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O.$$
(1)

У хімічних джерелах струму електрична енергія генерується у закритій системі перетворенням хімічної енергії через окиснювально-відновлювальні реакції на аноді та катоді з одночасним залученням їх до переносу зарядів та використанням як активно діючих речовин. Теоретично для створення ХДС можна використовувати будьяку окиснювально-відновлювальну реакцію (у придатному для цього електроліті) [12]:

$$a\mathbf{A} + n\mathbf{\bar{e}} \leftrightarrow b\mathbf{B},$$
 (2)

$$cC - n\bar{e} \leftrightarrow dD,$$
 (3)

$$aA + cC \leftrightarrow bB + dD,$$
 (4)

де *а* молекул А приймають *n* електронів (\bar{e}) з утворенням *b* молекул В на одному електроді, а на другому – *с* молекул С віддають *n* електронів з утворенням *d* молекул D. Вона у цьому випадку стає струмоутворюючою, а пара окиснювача (реакція 2) і відновлювача (реакція 3) називатиметься «електрохімічною системою» (реакція 4).

Стандартна енергія Гиббса (ΔG^0) такої реакції:

$$\Delta G^0 = -nFE^0,\tag{5}$$

де: F – число Фарадея ($F = \bar{e}N_A = 96485$ Кл/моль), а E^0 – стандартна електрорушійна сила.

Коли умови відрізняються від стандартних, потенціал електрода розраховується за рівнянням Нернста:

$$E = E^{0} - RT \cdot \ln(\mu_{\rm B}^{i} \mu_{\rm D}^{i} / \mu_{\rm A}^{i} \mu_{\rm C}^{i}) / nF, \qquad (6)$$

де: μ^{i} — активності компонентів, R — універсальна газова стала (8.314 Дж/моль·К), T – абсолютна температура.

Якщо обидва електроди є напівпровідниками, то напруга на елементі обмежується різницею потенціалів між електродами у відсутності струму:

$$V_{\rm oc} = -(\mu_{\rm A}{}^{\rm i} - \mu_{\rm C}{}^{\rm i})/nF,$$
(7)

де: $(\mu_A{}^i - \mu_C{}^i)$ – різниця хімічних потенціалів анода (A) та катода (C), n – кількість електронів, які беруть участь у хімічній реакції.

Номінальна напруга між електродами визначається енергіями переносу електронів

та іонів (залежно від кристалічної структури матеріалів). Тобто, до уваги активних необхідно брати як ширину електронних смугових зон, так і висоти бар'єрів переносу іонів. Напруга розімкненого ланцюга обмежена Voc < 5 В не тільки теоретично досяжною різницею електродних потенціалів відновника на аноді та окиснювача на катоді, але й також або шириною забороненої зони Eg між найвищою зайнятою молекулярною найнижчою орбіталлю та вільною молекулярною орбіталлю молекул рідкого електроліта, або шириною забороненої зони між верхнім краєм валентної зони та нижнім краєм зони провідності твердого електроліта [13].

Теоретична питома енергія ХДС (без урахування внеску ваги або об'єму конструкційних матеріалів) пропорційна стандартній електрорушійній силі та загальній питомій ємності, що складається з питомих ємностей катодного й анодного матеріалів ($Q_{cell} = Q_c \cdot Q_a / (Q_c + Q_a)$):

$$E_{\rm cell} = V_{\rm oc} \cdot Q_{\rm cell} \tag{8}$$

і обчислюється у Вт·год/кг, або Вт·год/дм³ (для пам'ятки: 1 Вт·год = 3600 Дж). При цьому питома ємність (мА·год/г) реагентів розраховується за рівнянням:

$$Q_{c(a)} = nF/3.6M = 26.8n/M,$$
 (9)

де M – молекулярна маса реагента. Таким чином, для отримання високої питомої енергії окиснювач і відновлювач повинні мати відповідно найбільш позитивне та негативне значення електродного потенціала, а питома ємність обох електродних матеріалів при цьому повинна бути максимально можливою.

Привабливість літієвих джерел струму (ЛДС) заснована на двох основних факторах. По-перше, літій _ найлегший метал (еквівалентна вага – 6.941 г/моль, шільність – 0.534 г/см³). За питомою ємністю (3.86 А·год/г) металевий літій поступається лише берилію (5.95 А-год/г). У ході реакції $Li^0 \rightarrow Li^+ + \bar{e}$ вивільнюються електрон та іон літію, які спрямовуються, відповідно, зовнішній У ланцюг і пористу структуру позитивного електрода. Завдяки малому іонному радіусу, катіони літію вирізняються високою рухливістю у твердофазних електродах.

По-друге, найвищий негативний потенціал літієвого електрода (-3.04 В відн.

стандартного водневого електрода) відкриває унікальну можливість виготовляти первинні та вторинні ХДС з напругою майже 5 В (рис. 1). З одного боку, анодні матеріали з відносно високими електрохімічними потенціалами не викликають практичного інтересу (якщо двовольтовий анодний матеріал об'єднати з 4.5-вольтовим катодним матеріалом, то розрядна напруга ХДС буде меншою 2.5 В, навіть коли обидва мають пласке плато потенціалів під навантаженням). З іншого боку, відсутність плато може перетворити вторинне ХДС на електрохімічний псевдоконденсатор.

Рис. 1. Порівняння вольтамперних кривих деяких анодних і катодних матеріалів для вторинних літієвих електрохімічних систем

Рис. 2. «Дорожна карта» розвитку ХДС [19]

За енергомісткістю на одиницю маси літій поступається лише берілію, а на одиницю об'єму – берілію, алюмінію, магнію, цинку та кальцію. Однак високий заряд іонів Be^{2+} , Al^{3+} , Mg^{2+} , Zn^{2+} , Ca^{2+} призводить до

їхньої низької рухливості як у електролітах, так і у твердофазних електродах, що значно ускладнює практичну реалізацію відповідних іонних акумуляторів [14–17]. Виходячи з високого позитивного потенціалу редокс-пари F_2/F^- (+2.87 В відн. стандартного водневого електрода), багатообіцяючими для створення EA з високою питомою енергією є також фтор-іонні системи, наприклад, у вигляді комбінацій $M \parallel MF_x$ (зокрема – Ce | La_{0.9}Ba_{0.1}F_{2.9} | BiF₃ [18]).

На рис. 2 представлена «дорожна карта» розвитку ХДС, починаючи від винаходу Alessandro Volta електрохімічної системи Zn || Ag, та продовжуючи створенням численних інших (первинних і вторинних) електрохімічних систем [19].

Первинні літієві джерела струму (системи: Li $\|SO_2, Li\|(CF)_n, Li\|MnO_2$ та Li|LiJ|J₂PVP (полівінілпіридин) та інші) є комерційними продуктами з початку 1970-х років [20-22]; у СРСР їхнє промислове виробництво розпочато У 1982 p. на автоматичній лінії київського HBO «ОКТАВА»: З В-дискові елементи системи

Li || MnO₂ (МЛ-2325) та Li || (СF)_n (ФЛ-2016), а пізніше, вже в Україні (1995 р.), – 1.5 В– дискові елементи системи Li || CuO (GR2016).

Із середини 1990-х років літій-іонні акумулятори (ЛІА) вже є комерційними з найвищою питомою енергією та потужністю. Завдяки екологічності та невпинному зниженню собівартості, вони успішно витискають з ринку інші системи [23-25]. У розвинені зв'язку 3 шим. країни позбавляються виробництва токсичних свинцевих (СА) та нікель-кадмієвих (НК) акумуляторів. Як приклад, у таблиці 1 наведено дані щодо виробництва ХДС різних електрохімічних систем у Японії станом на 2013 р. [26]. Видно, що вже тоді найменше випускалося свинцевих акумуляторів (~1 %). На жаль, в Україні на поточний момент випускаються лише свинцеві акумулятори.

Таблиця 1. Виробництво ХДС у Японії (2013 р.) згідно даних [26]

Електрохімічні системи	Відсоток виробництва
Літій–іонні акумулятори	23
Лужні елементи Zn MnO ₂	22
Срібно-цинкові елементи Zn Ag ₂ O	22
Літієві елементи	17
Нікель–металогідридні акумулятори	11
Лужні акумулятори (у тому числі нікель-кадмієві)	4
Свинцеві акумулятори	1

Технічний прогрес за останні півтора століття рухає саме підвищення питомої енергії акумуляторів (рис. 3). Верхню межу питомої енергії (<120 Вт. год/кг) для СА, НК та нікель-металогідридної (НМГ) систем обмежує вузьке «електрохімічне вікно» стабільності води, що виводить їх із категорії «високоенергоємних акумуляторів». До того ж, вони мають відносно високу вартість однієї кВт год електроенергії.

Рис. 3. Динаміка підвищення питомої енергії ЕА різних систем (із цінами за кВт год електроенергії) [27, 28]

Ha відміну акумуляторів інших від електрохімічних літієві систем, мають перспективи прерогативного подальшого [29–31]. розвитку Якщо питома енергія сучасних ЛІА (з графітовим анодом і катодом із літійованих оксидів перехідних металів) сягає ~250 Вт год/кг, то навіть часткова заміна графіту в аноді на кремній дозволяє досягти вже 400 Вт. год/кг, а при використанні літію (зокрема, у так званих «безанодних» літієвих акумуляторах [32–34], які виробляються у розрядженому вигляді, а металевий літій на струмовідводі-підкладинці з'являється під час їхнього заряду) та при додатковому переході на сірчаний (або кисневий) катод можна отримати ~500 Вт. год/кг і навіть більше (рис. 4).

Очікується, що до 2022 року обсяг продажу ЛІА сягне понад 69 млрд. доларів

США та буде й далі зростати на ~16 % у рік [35]. В основному, ринок ЛІА формується стаціонарними системами зберігання електричної енергії (ССЗЕЕ), потрібними для маневруючих потужностей (замість використання для цього теплових електростанцій [36]), електромобілями та побутовою електронікою. При цьому частка ССЗЕЕ на влвічі перевищує частку ньому електромобілів [37]. До 10-и топ-виробників ЛІА для ССЗЕЕ належать: LG Chem та Samsung SDI (лідери); BYD, Panasonic, Kokam, Toshiba, Saft, Leclanché (наздоганяючі); CATL, Electrovaya (замикаючі десятку) [38]. Корпорації LG Chem та Panasonic є також постачальниками ЛІА для найбільшого у світі електроавтовиробника – компанії Tesla.

Рис. 4. Порівняльні величини питомої енергії ЕА [39, 40]

У 2015 році на ринку з'явилися ЛІА з Si-вмісним анодом корпорацій LG Chem, Panasonic та Samsung, які мають значну перевагу в підвищеній питомій енергії та порівняно низьку вартість відносно традиційних ЛІА з графітовим анодом [6, 41–45].

Проблеми розширення сфер застосування ЛДС впираються переважно не в технологію, а в науку. Необхідні дешеві електродні матеріали й електроліти з унікальними властивостями. А головне – потрібен системний підхід, який враховує взаємозв'язок усіх складових компонентів ЛДС та взаємозалежність його електрохімічних параметрів (поліпшити який-небудь один показник і при цьому не принести у жертву інший – завдання не з легких).

Придатність електродів для вторинних ЛДС визначають чотири основні електрохімічні параметри — діапазон робочих потенціалів (ΔU), величина навантажувальної (тобто закладеної у електродний шар) ємності (L, мА год/см²), утримуваність ємності при тривалому цикліюванні (R) та кулонівська ефективність цикліювання (E).

твердофазних «Зберігання» літію y електродах можливе або за інтеркаляційним. або за конверсійним типами електрохімічних реакцій. В інтеркаляційних електродах ЛДС кристалічна структура активних матеріалів залишається незмінною, тому ємність щодо розміщення у них еквівалентної кількості атомів літію відносно невелика. У конверсійних електродах обох типів [MX_z + $yLi^+ + y\bar{e} \rightarrow M + zLi_{(y/z)}X$ (I) ta $X + yLi^+ + y\bar{e}$ $Li_v X$ (II)] активні матеріали при \rightarrow (де)літіюванні зазнають руйнування кристалічної структури аж до розриву та рекомбінації ковалентних або металевих зв'язків (конверсійним вважається також електрод із металевого літію), але теоретично вони мають набагато більшу ємність: різниця може сягати десятикратної величини. Тому заміна інтеркаляційних електродів на конверсійні дає можливість розробникам

ЛДС різко підвищити їхню питому енергію та потужність. Труднощі, проте, полягають у тому, що, на відміну від інтеркаляційних, (де)літіювання активних матеріалів за конверсійними механізмами, зазвичай, супроводжується значною механічною напругою в об'ємі електродів, що створює для дослідників додаткові проблеми.

На рис. 5 показані питомі ємності та робочі потенціали інтеркаляційних i конверсійних анодів і катодів (ІА, КА, ІК та КК, відповідно) як таких, шо вже застосовуються, так і потенційно придатних для використання у ЛДС (як перспективні ІК збагачені розглядаються також літієм сполуки Li_{1+x}(Mn, Ni, Co)_{1-x}O₂ [46], наприклад Li_{1.2}Mn_{0.55}Ni_{0.15}Co_{0.1}O₂ [47]), а також позначені межі термодинамічної стійкості основних класів апротонних диполярних розчинників (АДР).

Рис. 5. Питомі ємності та робочі потенціали інтеркаляційних і конверсійних анодів і катодів ЛДС з межами термодинамічної стійкості основних класів АДР

Різноманітність активних електродних матеріалів ЛДС обумовлена відмінностями вимог до них. Кожна електрохімічна система доцільна у суттєво конкретному випадку. Так, промислове виробництво елементів системи Li || CuO (яке призначене для заміни срібно-цинкових та ртутно-цинкових елементів, відповідно систем Zn || Ag₂O і $Zn \parallel HgO$) пов'язане наявністю з v користуванні величезної кількості електронних пристроїв, розрахованих на робочу напругу виключно 1.5 В, а також тим, що у багатьох випадках підвищення напруги

до 3 В принципово неможливо, наприклад, в електронно-механічних годинниках [48].

ПРОБЛЕМИ РОЗРОБКИ КОНВЕРСІЙНИХ АНОДІВ ІІ ТИПУ ДЛЯ ЛІТІЙ – ІОННИХ АКУМУЛЯТОРІВ

Величезну увагу з боку промисловості розвинених країн привертають конверсійні аноди II типу та спонукають неабиякий науковий інтерес зв'зку 3 їхньою y надвисокою питомою ємністю та незвичайними властивостями [49–57]. Складною проблемою при работі з ними, а особливо з оловом і кремнієм, є те, що кількості уведення значної літію супроводжується дуже великою зміною об'єму вихідних матеріалів – приблизно 260 % при утворенні інтерметаліду кінцевого складу Li₁₇Sn₄ (з теоретичною питомою ємністю 959.5 мА·год/г, або 6995 мА·год/см³ олова) та 280 % - у випадку Li₁₅Si₄ (теоретична питома ємність якого дорівнює 3579 мА год/г та 8339 мА·год/см³ кремнію, або 2190 мА·год/см³ у розрахунку на інтерметалід [58, 59]), у порівнянні з лише 9–12 % для LiC₆ (з теоретичною питомою ємністю 372 мА год/г, або 841 мА·год/см³ графіта). Це призводить до появи значних внутрішніх механічних напруг та розтріскування частинок, яке супроводжується порушенням електричного контакту з колектором струму [51, 60, 61]. Наслідком цього стає суттєва втрата електродами на основі сплавів літію оборотної ємності при їх зарядженні-розрядженні.

З цієї причини інтерес до літієвих сплавів, як матеріалів негативних електродів літієвих акумуляторів, був на якийсь час втрачений (з кінця 80-х) і відродився лише після досліджень фірми Fujifilm Celltec (Японія) аморфних оксидів олова у кінці 90-х років минулого сторіччя [62]. Хоча ці матеріали виявилися непридатними для промисловості, ідеї, покладені в їхню розробку (концепція фаза / неактивна «активна матриця»), отримали подальший розвиток, у тому числі в роботах із оловом та кремнієм. При цьому олово у вигляді «аморфного» композиту «Sn-Co-вуглець» (з розміром частинок менше 300 нм) раніше за кремній знайшло практичне застосування _ ЛІА із ним випускаються корпорацею Sony з 2005 року під торгівельною маркою Nexelion [63].

Привабливим анодним матеріалом для високоенергоємних ЛІА є також алюміній. завдяки великій питомій ємності, прийнятним робочим потенціалам, дешевизні, доступності, екологічності відносно та невеликому збільшенню об'єму при електрохімічному сплавоутворенні з літієм [64-74]. Аналіз фазової діаграми бінарної системи «Li – Al» [75–77] показує, шо алюміній утворює з літієм три стабільні при кімнатній температурі інтерметаліди: LiAl (993 мА·год/г, або 2681 мА·год/см³), Li₃Al₂ i Li₉Al₄ (2235 мА·год/г, або 6032 мА·год/см³). У кристалічному Al атоми розташовані у вузлах

кубічної гранецентрованої ґратки, а в інтерметаліді LiAl – лише 50 % атомов алюмінію залишаються на вихідніх позиціях, займають толі як решта тетраедральні межвузілля; при цьому атоми літію розташовуються у тетраедральних і в усіх октаедральних позиціях. Таке структурне перегрупування відбувається з переміщенням атомів Li й Al на значні вілстані та суттєвим супроводжується зростанням об'єму елементарної ґратки (на ~96 %) [78]. Великі зміни об'єму та мікроструктури (як наслідок періодичних фазових переходів), а також побічні реакції з компонентами електроліту в процесах уведення-вилучення літію, також, як у випадку використання в аноді ЛІА олова або кремнію, є основними погіршують факторами, що параметри цикліювання електродів на основі алюмінію.

Стрімке зростання кількості наукових публікацій, що присвячені конверсійним анодам II типу для ЛДС, зокрема літієвому та кремнієвому, демонструють графіки на рис. 6 (згідно оглядів [79, 80]).

Робота із літієм є складною у зв'язку із його агресивною хімічною природою [81]. Висока активність літію яскраво виявляється вже при намаганні створити «чисту» поверхню Li-електрода. Зачищена іонним бомбардуванням поверхня навіть у високому вакуумі «виловлює» остаткові молекули газу та вкривається найтоншою плівкою продуктів взаємодії. Важливою особливістю літію є також відсутність «самообмежуючої пасивації», як це відбувається на повітрі з алюмінієм і кремнієм. В атмосфері «сухої кімнати» (з відносною вологістю меншою 2 %) зразок металічного літію вже через декілька днів цілком перетворюється на порошок карбонату літію [82].

Реакція О₂ з очишеною поверхнею літію в ультрависокому вакуумі призводить ло утворення миттєвого Li₂O, причому Li-фольга реагує повністю, незалежно від її товщини. Плівка Li₂O має пористість ~50 % [83]. Ця властивість літію виявляється також у реакціях із H₂O (відбувається утворення са́ме Li₂O із пористістю 50-60 %, а не LiOH) [84]. Вона пов'язана з луже низькою густиною літію (яка дорівнює ¹/4 від густини Li₂O): саме це є головною причиною безперервної відсутності пасивації та доступності його поверхні для цих реагентів крізь макроскопічні канали у шарі Li₂O.

Взаємодією із СО₂ при 120 К літій в ультрависокому вакуумі утворює Li₂CO₃, а при 320 К – Li₂O та вуглець [85]. Отже, у «сухій кімнаті» (приміщення для виробництва ЛДС) літій спочатку реагує з

киснем до Li₂O, який далі повільно перетворюється на Li₂CO₃. Таким чином, Li₂CO₃ безпосередньо на поверхні літію не може існувати, під ним завжди знаходиться шар Li₂O, можливо з вуглецем [85].

Рис. 6. Кількість публікацій, які присвячені літієвому [79] (*a*) та кремнієвому [80] (б) анодам для створення ЛДС нових поколінь

Найважливішою для первинних ЛДС є саме реакція CO₂ з поверхнею літію, який попередньо контактував з киснем. Це прямий шлях до формування шару Li₂CO₃ на поверхні Li-електрода, наприклад, під час занурення зрізаної на повітрі літієвої фольги у пропіленкарбонат (PC):

$$Li_{2}O + HC - CH_{2} \longrightarrow Li_{2}CO_{3}\downarrow + HC - CH_{2} CH_{3},$$
(10)

де оксид літію на її поверхні заміщується на карбонат. Далі на первинному шарі Li₂CO₃ відбувається відновлення пропіленкарбонату за можливою схемою [86]:

У випадку іншого розчинника – диметоксиетану (DME), який широко використовується у первинних ЛДС, можливі реакції:

$$\overset{\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}}{\overset{\mathrm{I}_{e}+\mathrm{Li}^{*}}{\longrightarrow}} \overset{\overset{\mathrm{Fe}+\mathrm{Li}^{*}}{\longrightarrow}}{\overset{\mathrm{H}_{2}}{\overset{\mathrm{CH}_{2}}{\longrightarrow}} \overset{\mathrm{CH}_{2}}{\overset{\mathrm{H}_{2}}{\longrightarrow}} \overset{\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\overset{\mathrm{H}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\longrightarrow}} \overset{\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\overset{\mathrm{H}_{2}-\mathrm{O}-\mathrm{CH}_{3}}{\longrightarrow}} \overset{\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\overset{\mathrm{H}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\longrightarrow}} \overset{\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\overset{\mathrm{H}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\longrightarrow}} \overset{\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\overset{\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\longrightarrow}} \overset{\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\overset{\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\longrightarrow}} \overset{\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\overset{\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\longrightarrow}} \overset{\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\overset{\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\longrightarrow}} \overset{\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\overset{\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}}{\longrightarrow}} \overset{\mathrm{CH}_{3}-\mathrm{CH}_{3$$

з утворенням метоксиду літію. За присутності води алкілкарбонати та алкоксиди літію розкладаються:

$$RCO_{3}Li+H_{2}O\rightarrow Li_{2}CO_{3}\downarrow+2ROH+CO_{2}, \qquad (13)$$

$$ROLi + H_2O \rightarrow LiOH \downarrow + ROH.$$
 (14)

Додавання алкілкарбонатів (етиленкарбонату – ЕС, диметилкарбонату – DMC, диетилкарбонату – DEC, етилметилкарбонату – ЕМС та ін.) або СО₂ до електроліту значно покращує стабільність та циклічний ресурс літієвого електрода [87, 88], завдяки формуванню нерозчинних сполук: карбонату, алкоксидів, алкілкарбонатів літію та ін. [89]:

 $EC+2Li^++2\bar{e}\rightarrow Li_2CO_3\downarrow+2ROH+C_2H_4,$ (15)

$$DMC+2Li^{+}+2\bar{e}\rightarrow 2CH_{3}OLi\downarrow +CO, \qquad (16)$$

 $DMC+2Li^{+}+2\bar{e}\rightarrow Li_{2}CO_{3}\downarrow+H_{2}+CH_{4}, \qquad (17)$

або через утворення радикалів [90]:

$$EMC+Li^{+}+\bar{e}\rightarrow CH_{3}CH_{2}OLi\downarrow+CH_{3}OCO^{\bullet}, \qquad (18)$$

$$CH_3OCO+Li^++\bar{e}\rightarrow CH_3OLi\downarrow+CO.$$
 (19)

Треба визнати, що хоча розчинність цих сполук передбачається дуже низькою, точні кількісні величини у літературі не знайдені.

Коли літій вступає у контакт із розчином SO_2 (у суміші РС й ацетонітрилу (AN) для забезпечення високої провідності електроліта у первинному елементі системи Li || SO_2 при температурах до -40 °C), відбувається утворення дітіоніту літію (літій також може реагувати з PC та AN) [91]:

$$2\mathrm{Li}^{+}+2\bar{\mathrm{e}}+2\mathrm{SO}_{2}\rightarrow\mathrm{Li}_{2}\mathrm{S}_{2}\mathrm{O}_{4}\downarrow.$$

$$(20)$$

Розчинність Li₂S₂O₄ у присутності SO₂ дуже мала, тому його шар на поверхні літію

захищає літієвий електрод від саморозряду (внаслідок окиснення літію). Це дає можливість виробляти елементи Li || SO₂ зі строком служби більше 10 років.

Головна проблема, що примушує обмежити розміри комерційних ЛДС, призначених для широкого вжитку, це - питання безпечності у використанні. Основний фактор, який впливає на неї – склад електроліту. У зв'язку з тим, що потрібні апротонні диполярні лля ЛЛС виникають ускладнення, розчинники, IIIO пов'язані з їхньою вогненебезпечністю й токсичністю. Також АДР повинні розчиняти велику кількість солі при температурах від – 60 °С (для спеціальних ЛДС) до ~0 °С (для побутового використання). На даний час вивчений широкий набір можливих АДР для ЛДС; властивості деяких з них представлені у таблиці 2.

Таблиця 2.	Фізичні константи деяких	розчинників при 25 °C (н	використані дані з	роботи [92]

Розчинник Формула		3	η, cΠ
Пропіленкарбонат РС	CH ₃ -CH-CH ₂ O O C=O	65.0	2.53
Етиленкарбонат ЕС		89.6*	1.85*
γ-Бутиролактон BL	$\begin{array}{c} H_2C \longrightarrow CH_2 \\ H_2C \bigvee O \\ C = O \end{array}$	39.1	1.75
Тетрагідрофуран THF	H_2C CH_2 H_2C CH_2	7.4	0.46
Диметилкарбонат DMC	H ₃ C CH ₃ O O C=O	3.2	0.58
Диетилкарбонат DEC	$\begin{array}{c} CH_3-CH_2 & CH_2-CH_3\\ & & \\ O & O\\ C=O \end{array}$	2.8	0.75
Етилметилкарбонат ЕМС	$\begin{array}{c} CH_3-CH_2 CH_3 \\ O \\ C=O \end{array} \begin{array}{c} CH_3 \\ O \\ C=O \end{array}$	2.4	0.65
Диметоксіетан DME	CH ₂ -O-CH ₃ CH ₂ -O-CH ₃	7.1	0.40
Диметилсульфоксид DMSO	H₃C−O−S−O−CH₃ O	46.7	2.02
Метилацетат МА	H ₃ C CH ₃ O C=O	6.7	0.37
Діоксид сірки SO ₂	SO ₂	12.0**	0.26**
Тіонілхлорид SOCl ₂	Тіонілхлорид SOCl ₂ O=S ^{C1}		0.60

*+65 °C; **-20 °C

Ідеальний АДР має суміщати високу відносну діелектричну проникність (ε) та низьку в'язкість $(\eta).$ Вибрати такий індивідуальний розчинник, зазвичай, не вдається, тому на практиці використовують змішані розчинники, в яких протилежний вплив відносної діелектричної проникності та в'язкості на питому електропровідність зведено до мінімуму. Як солі – найчастіше LiClO₄, використовують LiAlCl₄, LiBF₄. LiAsF₆, LiPF₆. Для попередження корозії Al-струмовідводу як підкладинки позитивного електрода комерційних літійіонних акумуляторів [93-95] застосовують переважно сіль LiPF₆, хоча вона гігроскопічна, термічно нестабільна та недешева. Вимоги до чистоти солей та розчинників є дуже високими [96, 97].

Аналіз таблиці 2 викликає важливі питання. За виключенням PC, EC та DMSO, відносні діелектричні проникності більшості розчинників менші за 10. Попри такі низькі величини, розчинність солей літію напрочуд висока у більшості з них, особливо тих, які мають карбонільні (або карбоксильні) групи.

Наступним питанням є розчинність солей літію у широкому діапазоні температур і необхідність забезпечувати концентрації не менше 1 моль/дм³ для попередження високої концентраційної поляризації електродів під час роботи ЛДС. З огляду на цю проблему, концентрація більшості електролітів майже завжди становить 1 моль/дм³, а іноді – від 1.5 до 3 моль/дм³. Етери та естери можуть розчиняти солі літію у дуже великій кількості. Як приклад: розчину 3.11 моль/кг LiAsF₆/PC відповідає 9.8 моль розчинника на 1 моль солі [92]. Виходячи з того, що число сольватації Li⁺ є від 3 до 4 [98], а для аніона – не більше 1, то щонайменше 4 моль розчинника потрібно для сольватації 1 моль солі. Зрозуміло, що не так багато залишається вільного розчинника для додаткової сольватації, тому розчин, хоча й є рідким високою в'язкістю), (3 дуже наближається до стану розплавлених солей. Для порівняння: 3.11 моль/кг розчину цієї солі у воді містить 55.5 моль H₂O на 1 моль солі.

Те, що висококонцентровані розчини залишаються рідкими до дуже низьких температур, укупі з достатньо високою провідністю, сприяє можливості функціонування ЛДС у жорстких умовах: наприклад, провідність 1 М розчину LiPF₆ у суміші EC+DMC+MA (1:1:1 об.) складає 1.4·10⁻⁴ См/см при −60 °С (при 25 °С це є 1.6·10⁻² См/см) [99].

Основним підходом до складання формули рідкого органічного електроліта (РОЕ) для низьких температур (без випадання солі в осад) є використання суміші розчинників:

 - із високою відносною діелектричною проникністю (для зведення асоціації іонів до мінімуму);

 із карбонільними чи ефірними групами (для сприяння розчиненню літієвих солей);

 - із низькою в'язкістю (для сприяння високій провідності);

 таких, що попереджують фазове розділення;

– здатних формувати на поверхні електродів ЛДС стабільний ізолюючий шар.

У першому наближенні шар продуктів реакцій з РОЕ на літієвому електроді ЛДС можна розглядати як ультратонкий твердий електроліт, зв'язаний з металічним літієм адгезією. Він гальмує подальші окиснювальновідновлювальні реакції за його участі. Між тим, утворення ізолюючого шару не позбавляє літій електрохімічної активності.

У присутності літієвого, або інших конверсійних електродів, заряджених до потенціалу стандартного літієвого електрода (тобто коли їхній електродний потенціал дорівнює хімічному потенціалу літію), ані вода, ані будь-які (прийнятні для ЛДС) органічні розчинники та іоногенні солі не є термодинамічно стабільними [100]. V принципі, такі електроди можуть повністю прореагувати з РОЕ, якщо на міжфазній межі з електролітом не сформований пасивуючий шар, який пригнічує побічні процеси. Саме реакції літію з органічними речовинамирозчинниками та іоногенними неорганічними солями РОЕ є ключем до створення ЛЛС. Ці реакції відбуваються одразу після контакту літієвого електрода з електролітом (на них уперше звернув увагу A.N. Dey [101]), а концепція міжфазного твердого електроліта, який є ізолятором для електронів i провідником для Li-ioнів (solid electrolyte interphase – SEI), запропонована E. Peled [102]. Пізніше, як основний компонент SEI, у більшості випадків ідентифікований саме Li₂CO₃ [88, 103]. Майже усі «формули» для сучасних літій-іонних електролітів акумуляторів представлені сумішами DMC,

DEC, EMC та EC у різних комбінаціях. У електролітах, які містять хоча б один з цих органічних карбонатів, пасивуючий шар на поверхні анода ЛДС переважно складають продукти відновлення саме розчинників, а не іоногенної солі.

Хімічний склад SEI, який спонтанно формується, є критично вирішальним щодо безпеки, терміну служби та вихідних електрохімічних параметрів ЛДС.

Загальновизнаною є «мозаїчна» модель SEI [104, 105], згідно з якою одночасно відбувається декілька процесів електровідновлення компонентів електроліта, а суміш нерозчинних продуктів цих реакцій осаджується на поверхні анода ЛДС у вигляді багатофазної структури з негомогенною морфологією (рис. 7). Іони Li⁺ можуть мігрувати крізь неї достатньо швидко. Внутрішня частина SEI, тобто шар, який формується безпосередньо на поверхні літію, складається з високовідновлених неорганічних компонентів: Li₂O, LiF, LiOH, Li₃N, Li₂CO₃ та інших.

Зовнішню частину SEI (3 боку електроліта) формують частково відновлені ROCO₂Li. органічні сполуки: ROLi. (CH₂OCO₂)₂Li₂, HOCH2CH2OCO2Li. CH₃CH₂OCH₂OLi, HCO₂Li та інші, V залежності від складу електроліта. Вона є проникною як для катіонів літію, так і для молекул розчинника [106–117]. Товщина SEI може бути від одиниць до декількох сотень нанометрів. У більш широкому розумінні, SEI є багатошаровою структурою, де кожен шар має власну мозаїчну будову.

Рис. 7. Схема «мозаічної» будови SEI (згідно роботи [104])

Треба звернути увагу, що висновки щодо хімічного складу SEI зазвичай роблять. базуючись ΡΦΕ-ІЧна даних та спектроскопії, шляхом ідентифікації піків і теоретичних обчислень. Але одні й тіж вихідні спектри можуть вести до різних висновків, якщо просто «підганяти» пікі, тобто у багатьох випадках це призводить до упереджених результатів. Тому реальний хімічний склад SEI все ще залишається під питанням. Ідентифікація його компонентів ускладнюється також тим, що вони можуть діяти не окремо, а синергично. Природа компонентів SEI, а також їхні властивості, можуть впливати на параметри SEI через скоординовані складні шляхи [118].

На наш погляд, визначення SEI, виключно як твердого електроліту на межі розділу фаз «негативний електрод | електроліт», не вичерпує різноманіття властивостей цього шару. Він функціонує як незалежна фаза та є фізичним бар'єром між електродом і електролітом. Крізь нього здійснюється перенесення маси, передача теплової та механічної енергії. У зв'зку з цими особливостями запропоновано його поліфункціональним називати поверхневим шаром [119], або ізолюючим поліфункціональним шаром (ІПШ) [120]. У подальшому ми будемо користуватися саме цим терміном, тим більше, що він є універсальним, бо замінює також визначення CEI як «cathode electrolyte interphase» і може застосовуватися для характеризації поверхні позитивних електродів ЛДС.

Аби бути ефективним, IIIIII повинен максимально відповідати сукупності загальних вимог [121]:

 процес формування шару повинен бути швидким, а утворений ІПШ – мати високу кінетичну стабільність;

 – число переносу електронів крізь ІПШІ має бути близьким до нуля (в іншому випадку може відбуватися тунелювання електронів, що сприяє безперервному електророзкладанню електроліта);

 – IIIШ повинен мати високу іонну провідність та бути достатньо тонким, аби іони літію могли швидко мігрувати при уведенні в об'єм активного матеріалу електрода та при вилученні з нього;

 необхідно, аби морфологія, структура та хімічний склад ізолюючого шару були однорідними для рівномірного розподілу струму;

– IПШ повинен мати сильну адгезію до поверхні електрода;

 необхідно, щоб ізолюючий шар був механічно міцним і при цьому достатньо гнучким та еластичним, аби не руйнуватися при розширенні та стисненні активного компонента електрода у процесах уведення– вилучення літію;

– IIIШ повинен містити нерозчинні та електрохімічно стабільні продукти реакцій електророзкладання РОЕ.

При цьому РОЕ, який застосовується, має бути дешевим, нетоксичним і працездатним у широкому діапазоні температур, а також складатися з негорючих і вибухобезпечних компонентів.

Ключова роль у забезпеченні високих і електрохімічних параметрів стабільних літієвих систем належить саме ІПШ, а успішна комерціалізація ЛДС стала можливою, завдяки контролю його фізикохімічних властивостей. Проте, аналіз дозволяє наукових публікацій не стверджувати про існування глибокого розуміння хімічних електрохімічних та процесів утворення ІПШ, або, навіть говорити про те, яким чином цей контроль здійснюється корпораціями-виробниками ЛЛС.

Досі ІПШ все ще залишається «the most important but least understood (component) in rechargeable Li-ion batteries», що пов'язане з недостатністю прямих *in situ* вимірювань його фізичних властивостей [122–124] (їх буквально одиниці: формування структури ІПШ на графітовому електроді *in situ* спостерігали за допомогою атомно-силової мікроскопії [125], на кремнієвому електроді вивчали тривимірну багатошарову структуру ІПШ з її механічними властивостями [126]), а також із тим, що для таких складних утворень співвідношення «структура – властивості» є взагалі невідомими. Важко наявними експериментальними методами характеризувати властивості ІПШ поза хімічним особливо склалом. термодинамічні та кінетичні властивості. Тому потрібного «конструювання» ІПШ виконується шляхом спроб і помилок, де багато залежить від інтуіції дослідника.

Питання щодо складу ІПШ є предметом широких дискусій. Запропоновані численими дослідницькими групами складові ΙПШ розрізняються у зв'язку з різними умовами його формування, тому ïχ неможливо уніфікувати. Реакції, які приводять ло утворення ІПШ, включають багато конкуруючих шляхів і кінцевих продуктів, а висока чутливість електрохімічних систем із неводними електролітами до забруднень атмосферними киснем і водою спотворює картину інструментальних вимірювань, які проводяться.

Методи вивчення поверхні електродів дають лише якісну інформацію про її склад і морфологію, але не дозволяють прогнозувати електрохімічну поведінку ІПШ. Для прямого вивчення процесів формування ІПШ потрібні інертні електроди, на яких не відбуваються інтеркаляційні та конверсійні реакції з літієм. Їх вибір суттєво обмежений, якщо взагалі можливий. Розуміння механізму функціонування ІПШ ускладнюється також малою його вкрай товшиною та потенціалзалежними фізико-хімічними властивостями.

У роботі всіх без винятку ХДС найбільш відіграє електрокаталіз важливу роль [127-129]. Метали, корозійні потенціали яких лежать нижче водневого, у водних розчинах є термодинамічно нестабільними і кородують із виділенням водню. Але для цинкового електрода в елементі Zn || MnO2 і свинцевого - у Pb || PbO₂ характерні високі перенапруги побічної реакції. У разі використання цинку в електроліті лужному цьому сприяє формування на поверхні металу малорозчинного шару $Zn(OH)_2$. Для додаткового захисту В комерційних елементах застосовують добавки - інгібітори [130]. Аналогічна корозії картина цілеспрямованого стримування побічної реакції реалізується на позитивних електродах НК- та НМГ-акумуляторів. Нею є виділення кисню при заряді, що призводить до зменшення кулонівської ефективності та порушення матеріального балансу. Тому (як частину технології) для них застосовують спеціальні інгібітори кисневої реакції [131].

поведінкою Керування межі поділу «електрод | електроліт» виявляється ще більш важливим у ЛДС, що зумовлено не тільки високими вимогами ДО електрохімічних параметрів, але й безпекою їхньої експлуатації. Електрохімічне розкладання POE може виявитися каталітичним процесом, кінетика якого (значною мірою) визначається природою та хімією поверхні електродного матеріалу. Циклічні вольтамперограми на очищеному в ультрависокому вакуумі Ni-електроді у розчині 1.2 М LiPF6/EC+EMC (3:7 об.) зі швидкістю розгортки потенціалу 1 мВ/с показують, що перша хвиля починається при ~2.7 В, зі збільшенням її нахилу при ~2.2 В (потенціал піку дорівнює ~1.85 В) [132], на Аи-електроді початок першої хвилі фіксується при 1.8÷1.5 В [133], а на графітовому електроді – в області 1.0÷0.7 В [134]. Такі експериментальні дані слугують на користь цього припущення.

Очікується, що сильніша взаємодія поверхні нікелю (ніж золота чи графіту) із молекулами розчинників РОЕ починається з дисоціативної хемосорбції, що знижує енергетичний бар'єр для наступного переносу електронів. У випадку графіту (можливо й інших вуглеців) електрохімічне відновлення молекул розчинника не є каталітичним, але, значною мірою, залежить від структури сольватної оболонки катіона літію, як це показано у роботі [135]. Відновлювальні потенціали вище 1 В відповідають, можливо, саме каталітичним процесам.

Чи будуть реакції електророзкладання електроліта продовжуватися після утворення ІПШІ, залежить від його структури – чи дійсно вона є пасивуючою. На аноді ЛДС ці процеси аналогічні корозії металів у водних розчинах. Природа корозійних реакцій у РОЕ не з'ясована: чи є вони хімічними – коли молекули розчинника проходять крізь ІПШІ і вступають у прямий контакт із атомами літію на поверхні електрода, або електрохімічними коли відбувається тунелювання електронів крізь моношар продуктів відновлення та взаємодія з молекулами розчинника.

Хоча IIIIII й забезпечує хімічну стійкість літію в агресивному щодо нього електроліті, але відіграє також негативну роль: осаджений з електроліта літій відразу капсулюється тією чи іншою мірою, а його осад складається з окремих частинок, які електрично ізолюються одна від одної та від струмовідводу, отже, втрачають здатність до подальшого (анодного) розчинення [119].

Коли на електроді є надлишок літію, він може компенсувати необоротні втрати ємності при цикліюванні. Середня кулонівська ефективність циклів (Ē) такого електрода визначається рівнянням [119]:

$$\bar{E} = [(Q_{\rm s} - Q_{\rm ex}/n)/Q_{\rm s}] \cdot 100\%,$$
 (21)

де: n – число нібито 100%-х за ефективністю використання літію циклів (при яких $Q_s = Q_p$, де: Q_s – ємність, яка виводиться з електрода при кожному розряді–розчиненні літію, а Q_p – ємність, яка уводиться до електрода при кожному заряді–осадженні літію), а Q_{ex} – надлишкова ємність літієвого електрода ($Q_{ex} = Q_o - Q_s$, де Q_o – теоретична ємність, що відповідає загальній кількості літію в електроді). Як показано на рис. 8, ресурс електрода з кулонівською ефективністю 99.9 % може перевищити 1000 циклів вже при трикратному надлишку літію [136].

нестабільність Са́ме межі поділу «Li | електроліт» унаслідок росту дендритів при цикліюванні вторинних ЛДС (наприклад, LillMoS₂ компанії Moli Energy) примусила їхнє швидке зняття з виробництва у кінці 1980-х років [137-139]. Але дуже висока енергоємність літію є занадто привабливою і це змушує останні 40 років розробляти стратегії щодо вирішення цієї проблеми [140-154], навіть за рахунок суттєвого зниження ємності [155, 156]. Дослідниками запропоновано багато катодних матеріалів, які придатні для використання у вторинних ЛДС, але що стосується літію, то проблеми утворення дендритів (із можливим коротким замиканням), втрати їхнього контакту зі струмовідводом та небажаних сторонніх реакцій з електролітом досі не вирішені. Літієві акумулятори все ще знаходяться на стадії «дитинства» [157, 158].

Хоча графітовий електрод гарантує

більшу безпеку в користуванні літій–іонним (ніж літієвим) акумулятором, платнею за це стає зменшення ємності активного анодного матеріалу з 3860 до 372 мА·год/г. На графітовому електроді ІПШІ забезпечує прийнятний ресурс комерційних ЛІА, навіть попри необоротну (хоча й незначну) втрату частини ємності, що пов'язана з його утворенням [159–161]. Але з набагато більшими викликами доводиться рахуватися при використанні високоємних конверсійних матеріалів II типу через значні зміни іхнього об'єму при зарядженні–розрядженні [162], що призводить до механічних пошкоджень ІПШІ та низької кулонівської ефективності циклів аноду ЛІА – нарощування ІПШІ супроводжується споживанням активного літію та електроліта, що й призводить до втрати ємності (рис. 9).

Рис. 8. Утримуваність ємності *R* електродів при трикратному надлишку літію в залежності від числа циклів *n* з різною кулонівською ефективністю [136]

Рис. 9. Механізми пошкодження (руйнування) ІПШ на електродах із літію (*a*); графіту (*б*); матричнихсплавоутворюючих матеріалів (*в*) при заряді – розряді (осадженні – розчиненні або уведенні – вилученні літію). Схема згідно роботи [163]

Як показує аналіз літератури [164], основні проблеми при розробці кремнійвмісних анодів ЛІА дослідники пов'язують саме з колосальним збільшенням об'єму активних частинок і кристалітів кремнію при електрохімічному літіюванні. Зменшення їхнього розміру до нанорівня має позитивний вплив на циклічну поведінку електродів [165] (характерна для наноматеріалів релаксація механічних напруг, що виникають у процесах уведення– видалення літію, сприяє високій утримуваності оборотної ємності при підвищенню цикліюванні) та адгезії наночастинок кремнію поверхні до струмовідводу [166]. Тому циклічну стабільність кремнійвмісних анодів намагаються підвищити шляхом використання нанокремнію [60, 167–177]. У значній мірі цим запобігається механічне руйнування електродного шару, підтримується надійний електричний контакт активного матеріалу зі струмовідводом та покращується масоперенос літію. Вивчають поведінку нанокремнію усіх морфології: 0D-нанодисперсного типів квантових точок, нанокристалів, нанопорошків числі тих, які складаються (у тому з порожнистих частинок): 1D-наноструктурованого – нанодротів та нанотрубок; 2D-нано-структурованого планарного – плівок і покриттів; 3D-наноструктурованого об'ємного мезопористого кремнію. Крім цього, синтезують гетерофазні кремнієві наноматеріали: композитні наночастинки, структури типу «ядро – оболонка» (0D); коаксіальні нанотрубки та нанодроти, композити на основі вуглецевих нановолокон і нанотрубок (1D); композити на основі графена (2D); мезо- та мікропористі композити 3 вуглецем, гетерогенні наноструктури складної ієрархії (3D) [177, 178].

При цьому керуються концепцією просторової (структурної) стабілізації кремнійвмісних електродів, у основу якої покладена ідея формування вільного (порового та порожнинного) простору, що у

процесі зарядження здатен заповнюватися розбухаючим сплавом Li_xSi, компенсуючи тим самим негативні механічні наслідки його об'ємного розширення. Для цього, зазвичай, вивчають кремнієві матеріали з низькою густиною, а також підвищують вміст електропровідної добавки та зв'язуючого в електродах.

У рамках такої стратегії отримані: фрактальний кремній з нанесеним на його поверхню нановуглецем фуллеритоподібної [179], структури тривимірний пористий кремній [180], нанопористий сітчастий [181] і нановолокнистий кремній [182], жовткові структури кремнію [183], двостінні кремнієві нанотрубки [174], кремнієві нанодроти [184] і Si/C-нанодроти мезопористі [185], вкриті тонким шаром аморфного вуглецю кремнієві нанотрубки [186], вуглецеві нановолокна з нанесеним на них кремнієм [187], тканина з покритих кремнієм вуглецевих нанотрубок [188], мікросфери з розгалуженого композиту вуглець «аморфний _ нанокремній графітизована сажа» [172], композит «графен – нанорозмірний кремній» [189], гранули з графену, на який послідовно нанесений нанокремній та вуглець [190], інкапсульовані у графен наночастинки кремнію [191], а також багато подібних їм наноматеріалів [192–209]. Основні типи та морфологія кремнієвих наноструктур наведені на рис. 10. Звернемо увагу, що усі вони (без виключення) «відкриті» до електроліту (тобто мають прямий контакт кремнію із ним).

Рис. 10. Основні типи та морфологія кремнієвих наноструктур

Уже перші дослідження показали високу стабільність тонкоплівкових циклічну кремнієвих електродів. Причому, чим тонший шар кремнію на електроді та чим вищий струм його заряду, тим краща утримуваність ємності (R) при цикліюванні. Для прикладу: електрод із шару *a*-Si завтовшки 50 нм на нікелевій фользі при струмі цикліювання 2С (при цьому на заряд або розряд електрода потрібно 30 хв) оборотну ємність показує більше 3600 мА·год/г_{si} упродовж ~200 циклів і більше 3000 циклів при струмі 30С з оборотною ємністю вище 2000 мА·год/г_{si} [210]. Тому не дивно, що на електродах з високопоруватим електродним шаром (у деяких роботах пористість сягає 80 % [181]) і значною поверхнею контакту кремнію з розподіленим струмовідводом (його роль, зазвичай, виконує вуглецевий матеріал з високою питомою поверхнею – сажа, вуглецеві волокна, графен) досягаються величезні значення оборотної ємності з розрахунку на масу кремнію -3670 мА год/г_я [172], а їхній ресурс у напівелементах з літієвим (!) протиелектродом при струмі заряда 12С перевищує 6000 циклів [174].

Такі прийоми просторової стабілізації електродного шару призводять до того, що через дуже малу кількість активного матеріалу - десяті (або навіть соті) долі мг/см² площі електрода – навантажувальна (тобто закладена у електродний шар) ємність (L, мА·год/см²) виявляється не набагато вищою, ніж у тонкоплівкових електродів, i. навіть, не наближається до такої для графітових електродів промислових ЛІА (~2 мА·год/см² при розміщенні 5.6 мг графіту на 1 см² поверхні електрода [211]). При цьому кулонівська ефективність циклів (Е) цих електродів із «відкритою» кремнієвою наноструктурою не перевищує 99 %.

3 рівняння (21) випливає, що чим менше активного матеріалу в електродному шарі робочого електроду та чим масивніше протиелектрод з металічного літію (або іншого літійвмісного матеріалу, наприклад -LiFePO₄. $Li_7Ti_5O_{12}$) y лабораторному напівелементі з великим об'ємом електроліту в ньому, тим вища утримуваність ємності при цикліюванні (це твердження є справедливим при вивченні як анодних, так і катодних матеріалів). Цими обставинами користуються численні дослідницькі колективи та (завдяки їм) демонструють високу питому ємність са́ме на одиницю маси розроблених активних електродних матеріалів і значний ресурс напівелементів цикліювання 3 такими електродами, видаючи високу утримуваність ємності (у цих умовах!) за основний критерій їхньої придатності для ЛІА. У науковій літературі, за окремими виключеннями (зокрема роботи дослідницького колективу під керівництвом проф. J. Dahn з Dalhousie University), помилково вважають величину середньої кулонівської ефективності циклів електродів 98-99 % (після першого) як дуже високу – «excellent Coulombic efficiency» (до згаданих посилань можна додати ще багато інших. наприклад [212–216]). Для підтвердження, на рис. 11 наведені типові криві, які у даному випадку відображають цикліювання напівелемента з електродом із нанесеного на вуглецеві нанотрубки (ВНТ) кремнію [175]. Кулонівська ефективність циклів, на відміну від утримуваності ємності, розглядається як щось другорядне.

Рис. 11. Електрохімічні параметри напівелемента Li || Si/BHT (з роботи [175])

Але подивимося на такі електроди очима виробника промислових ЛІА. Циклічний ресурс (*n*) ЛІА визначається із залежності:

$$R = E^{n}, \tag{22}$$

де *R* приймається рівним 0.8 (з практичної причини). На відміну від лабораторних напівелементів (з масивним Li-протиелектродом, тобто з великим запасом літію, який компенсує необоротну втрату зарядної досліджуваного електрода), ємності безповоротнє видалення літію з окиснювально-відновлювальних циклів літій-іонної електрохімічної пари промислових ЛІА веде до катастрофічних наслідків. Якщо один з електролів збалансованого (з олнаковою навантажувальною ємністю) ЛІА цикліюється з кулонівською ефективністю лише 99.0%, то вже на 100-му циклі такий акумулятор зможе прийняти заряд тільки на 37 % від початкової ємності. Після 50 циклів утримуваність ємності акумулятора буде складати 90.5 % при *E* = 99.8 % і лише 66.9 % при *E* = 99.2 %. При підвищенні кулонівської ефективності з 99.7 % до 99.9 % утримуваність ємності ЛІА зростає на 28 %. Аби досягти 5000 циклів, необоротно втративши 20 % при цьому ємності, кулонівська ефективність ЛІА повинна бути 99.996 % (згідно рівнянню (22): 0.99996⁵⁰⁰⁰ = 0.8). Отже, згадані «успіхи» у досягненні сотень (і навіть тисяч [174]) циклів кремнієвих електродів y напівелементах втрачають практичний сенс – можливість їхнього використання v комерційних ЛІА – через дуже низькі величини навантажувальної ємності та кулонівської ефективності циклів. Тому важко не погодитись з думкою проф. J. Dahn, що «... much of the «hype» in the literature about the importance of carbon nanotubes, Si nanowires, etc. for advanced negative electrodes for Li-ion batteries is simply unfounded» [217]. При виробництві ЛІА доведеться закладати у позитивний електрод (який має достатньо високу кулонівську ефективність циклів більше 99.99 % у разі LiCoO₂ [218]) надлишок активного матеріалу лля компенсації сумарної необоротної втрати літію на негативному електроді за весь циклічний ресурс, що негативно позначиться на безпеці та їхніх питомих характеристиках.

ФУНДАМЕНТАЛЬНЕ ПОНЯТТЯ «НАКОПИЧЕНОЇ НЕОБОРОТНОЇ ЄМНОСТІ» ЕЛЕКТРОДІВ

Придатність електрода (з безумовно високою навантажувальною ємністю) і формули РОЕ для ЛІА визначаються не лише такими параметрами як величина оборотної ємності (Q_{rev}) та її утримуваність упродовж тривалого цикліювання (R), але й також накопиченою за цей час необоротною ємністю Q_{airr} [219–221]:

$$Q_{\text{airr (n)}} = \sum_{l}^{n} (Q_{\text{ch (n)}} - Q_{\text{d}(n)}) = \sum_{l}^{n} Q_{\text{irr (n)}}, \quad (23)$$

яка є інтегральним показником необоротного «зв'язування» літію на поверхні та в об'ємі електрода за *n* циклів. Тоді як параметр *R* відображає структурну стабільність електрода, параметр Q_{airr} , у першу чергу, характеризує ефективність ІПШ на ньому. Зробити накопичену необоротну смність низькою є важчим важливішим і завданням, ніж підвищити утримуваність оборотної ємності, доволі легко досягається яка наноструктуруванням активного матеріалу, низькою навантажувальною ємністю та струмами високими заряду електрода y напівелементах з великим об'ємом електроліту та масивним протиелектродом.

Переваги використання кремнійвмісних анодів з катодами із LiCoO2, LiFePO4 або $LiNiO_2$ видно з рис. 12, на якому наведені криві зміни питомої ємності електрохімічної системи *О*_t у залежності від питомої ємності анода *О*_а (від 372 мА год/г для графіту і до 3579 мА год/г теоретичної питомої ємності інтерметаліду Li₁₅Si₄ – граничного складу літіювання кремнію при кімнатній температурі [58, 222]). У роботі [219] виконано розрахунок $Q_{\rm airr}$ при шикліюванні електродів iз кремнієвими наноматеріалами (на основі результатів експериментів, узятих із [171, 223]) для порівняння з величиною їхньої оборотної ємності. Електрод із матеріалу, в якому наночастинки (10-20 нм) кремнію нанесені (хімічним осадженням із газової фази) на графіт марки KS6 у кількості 7.1 мас. %, має оборотну ємність 520 мА·год/г_{Si+KS6} (позначений на рис. 12 як I). Електрод із нанодротів кремнію діаметром 89 нм, які були висаджені безпосередньо на струмовідвод, має оборотну ємність 3205 мА·год/г_{si} (позначений як II).

При використанні електрода І у па́рі з катодами 1, 2 та 3 можуть бути отримані питомі ємності 108, 128 та 140 мА·год/г, а у разі застосування електрода II – відповідно 131, 161 та 181 мА·год/г. Тобто, попри те, що різниця між оборотними ємностями електродів І та II більш ніж шестиразова, питома ємність електрохімічних систем із ними зростає лише на 20–30 %. Тому для ЛІА нових поколінь достатньо застосування анодів з ємністю ~1000 мА·год/г анодного матеріалу в разі використання традиційних катодних матеріалів.

Згідно даних рис. 13, для електрода І

характерна висока утримуваність оборотної ємності (після 50 циклів вона складає 94.6 %). свідчить, що адгезія наночастинок Цe кремнію до графітової матриці зберігається багатократному введенні-видаленні при літію. Деяка нестабільність на перших циклах, але, тим не менше, відносно висока утримуваність оборотної ємності (97.5 % після 10 циклів), спостерігається також для електрода II, тому що малий діаметр кремнієвих нанодротів та міцний механічний контакт кожної з них зі струмовідводом дозволяють їм розбухати та стискатися без розтріскування.

Рис. 12. Залежність теоретичної питомої ємності електрохімічних систем від питомої ємності аноду. Катоди: 1 – LiCoO₂, 2 – LiFePO₄, 3 – LiNiO₂. Штрихові лінії I, II – оборотні питомі ємності електродів I та II [219]

Рис. 13. Залежності зарядної $Q_{ch}(1, 2)$ та розрядної $Q_d(1', 2')$ ємностей, кулонівської ефективності циклів E (*1a*, *2a*), необоротної зарядної ємності $Q_{irr}(16, 26)$ і накопичених необоротних ємностей $Q_{airr}(1e, 2e)$ відповідно електродів І та ІІ від номера цикла *n* [219]

Кулонівські ефективності першого циклу майже однакові для обох матеріалів і відповідно 75 та 73 %. У складають наступних циклах досягається майже 99.5 % для електрода I та ~90 % для електрода II. Порівняльний аналіз кулонівської ефективності циклів електродів у напівелементах є малоінформативним, оскільки не дає повного уявлення про динаміку та глибину побічних процесів. Більш зручною для сприйняття є залежність необоротної втрати зарядної ємності (%) від номера цикла. Видно, що починаючи з другого цикла вона поступово зменшується від 3.2 до 0.6 % для електрода I, а для II залишається практично незмінною, складаючи 7-9 %. Таким чином, необоротні втрати зарядної ємності продовжуються й після першого циклу. Саме для кількісної необхідна для оцінки цих втрат, яка проведення коректного порівняння електрохімічної поведінки різних електродів, нами уведений новий характеристичний параметр – накопичена (за *n* циклів) необоротна ємність [219–221] (рівняння (23)). Після 51 цикла накопичена необоротна ємність електрода I дорівнює 412 мА·год/г, що складає 84 % від оборотної ємності, яка залишилась на цей момент. Важливо відзначити, що при необоротній ємності першого циклу 170 мА год/г, накопичена за наступні 50 циклів необоротна ємність лосягає 242 мА·год/г, тобто 142 % віл необоротної ємності першого циклу. Для електрода II накопичена необоротна ємність стає такою ж, як його оборотна ємність, лише за вісім циклів. При необоротній ємності першого циклу 1153 мА год/г накопичена за наступні дев'ять циклів ємність складає 2556 мА год/г, тобто 222 % від необоротної ємності першого циклу.

Таким чином, для коректного представлення електрохімічних параметрів електродів, які розробляються для застосування у ЛІА (із безумовно задовільною для промисловості навантажувальною ємністю), вкрай важливо вказувати їхню накопичену необоротну ємність.

Згідно роботи [219], визначальний вплив на величину Q_{airr} мають властивості поверхні активних матеріалів електрода та природа зв'язуючого (треба враховувати його власну електрохімічну активність), склад електроліту, а також умови цикліювання – найбільш «жорстким», таким, який реалізується у промислових ЛІА, є заряд у режимі «постійний струм/постійна напруга», причому треба мати на увазі, що «high rate cycling ... may lead to spurious conclusions about cycle life under conditions of low rate (i.e., daily) charge and discharge due to the extended time available for parasitic reactions to occur» [218]. Сукупне вирішення цих проблем потребує системного підходу [219, 220].

Мало того що контроль складу, структури й товщини ІПШ на конверсійних електродах ускладнюється через великі додатково механічні напруги в їхніх об'ємах, він виявляється ще складнішим при використанні композитних електродів, які необхідні для ЛДС, завдяки високому відношенню площі поверхні ло об'єму. Крім активних матеріалів, до їхнього складу, зазвичай, входять зв'язуючі, електропровідні добавки та структури (найчастіше – вуглецеві), на або в яких розміщуються активні матеріали, що беруть участь у побічних реакціях. Тому, щоб досягти високих електрохімічних параметрів конверсійними електролами. ЛЛС iз необхідно пригнічити небажані побічні реакції з електролітом до мінімального рівня.

Серед основних задач є також потреба у забезпеченні однорідності ІПШ за товщиною для рівномірного розподілення струмів заряду–розряду та гомогенного сплавоутворення (рис. 14) з метою попередження значних механічних напруг у локальних процесах розбухання сплавів.

Практичне використання графітових анодів у промислових ЛІА доводить, що ІПШ на них здатен підтримувати тисячі циклів заряду–розряду впродовж десяти та більше років. Такий самий рівень ефективності ІПШ конче потрібен для сплавоутворюючих матриць, зокрема – кремнію та алюмінію.

Підвищення пикліювання pecypcy сплавоутворюючих електродів при використанні інтерметалідів та композитів досягається за рахунок зниження їхньої питомої ємності. Як «ідеальний» матеріал для Al-електрода вперше було запропоновано [121] використовувати алюмінієву фольгу, що дозволяє позбавитись багатьох баластних числі зв'зуючих, матеріалів, v тому електропровідних добавок i, навіть, струмовідвода [39, 224]. Нещодавно ця ідея [121] була також реалізована японськими дослідниками [225] як «an innovative way» використання Al-фольги як «self-standing anode for lithium batteries».

Для успішної комерціалізації ЛІА із Al-електродом необхідна, крім іншого, придатна «формула» електроліту, проте ця сторона проблеми до появи роботи [121] залишалася не описаною в літературі. З цим погоджуються німецькі дослідники [226], які також «turned attention to the role of the electrolyte as the majority of the literature focused solely on the design of the aluminum composite electrode».

Рис. 14. Схеми локального (*a*) та гомогенного (б) сплавоутворення при формуванні неоднорідного (*a*) й однорідного за товщиною ІПШ (б)

СКЛАДАННЯ ОПТИМАЛЬНОЇ «ФОРМУЛИ» ЕЛЕКТРОЛІТУ

Вдалий формульний склад електроліту – найбільш простий, економічний та ефективний шлях підвищення циклічного pecypcy, потужності та безпеки ЛІА, особливо з ємністю високою навантажувальною конверсійного анода II типу, оскільки великі періодичні зміни об'єму активних матеріалів у ньому можуть викликати розтріскування та/або відшарування ІПШ. Необхідно створити електроліт, який забезпечує формування механічно міцного й еластичного, хімічно та електрохімічно стабільного, нерозчинного у РОЕ, щільного та тонкого ІПШ з уніполярною провідністю по катіонах літію та високою адгезією до поверхні електрода. Малоймовірно, що який-небудь один компонент ІПШ може задовольнити цим вимогам одночасно. Тому ШШ має бути багатокомпонентним багатошаровим (в ідеалі з контрольованим складом, структурою, морфологією i товщиною) як в умовно неорганічній його частині, так і в органічній. Найкращим сценарієм є формування еластичного ІПШ (рис. 15), але при цьому він має також відповідати вищевказаним вимогам. Тільки за VMOB Al-електрод при повному таких літіюванні алюмінію, тобто перетворенні в інтерметаліди LiAl, Li₃Al₂ або Li₉Al₄, здатен до відносно тривалого цикліювання.

Формульний склад РОЕ, які використані при дослідженні електрохімічної поведінки АІ-електрода [121], наведено у таблиці З. До традиційного електроліту на основі ЕС додано у невеликій кількості вініленкарбонат (VC), етиленсульфіт (ES), пропіленсульфіт (PS). У деяких випадках лінійний алкілкарбонат частково замінено на РС, а в EC інших _ повністю замінено на фторетиленкарбонат (FEC).

При цикліюванні Аl-електрода (з повним насиченням літієм кімнатній при температурі) у традиційному електроліті ЕІ він швидко втрачає оборотну ємність: R₁₀ складає 42.1 % від Q_{rev} , яка дорівнює Дивно, 1040 мА ·год/г. але зменшення товщини алюмінію з 21 до 1 мкм (що викликає падіння навантажувальної ємності з 5.6 до 0.27 мА·год/см²) не впливає на його електрохімічну поведінку (рис. 16).

Як випливає 3 аналізу кривих, представлених на рис. 17, додавання до електроліту ЕІ невеликої кількості VC (формула Е2) приводить до суттєвого покращення утримуваності ємності Alелектрода. Після повної заміни ЕС на FEC та додаткового уведення в електроліт Е2 невеликої кількості ES (формула *E3*) досягається ще більша утримуваність ємності: $R_{10} = 86.0$ %, а $R_{15} = 80$ %. I це при високій оборотній ємності 967 мА год/г. _ В електроліті 5 об. % РС (формула *E4*) 3 утримуваність ємності навіть нижче, ніж у електроліті E1, але вона суттєво покращується при додаванні VC та PS (формула E5). Варто відзначити відносно низькі величини розрядної ємності першого циклу та оборотної ємності, які характерні для циклічної поведінки електрода в електролітах E2 і E5, на фоні кращої утримуваності ємності, ніж в електролітах E1 і E4.

Рис. 15. Можливі сценарії (1–3) формування ІПШ на конверсійних (сплавоутворюючих) електродах ІІ типу

Таблиця 3. Позначення та склад електролітів, які використовували у дослідах [121]

Позначення	Формула електроліта	
El	1M LiPF ₆ / ЕС + ЕМС (30:70 об. %)	
E2	1M LiPF ₆ / ЕС + ЕМС (30:70 об. %) + VС (2 мас. %)	
E3	1M LiPF ₆ / FEC + EMC (30:70 об. %) + VC (3 мас. %) + ES (2 мас. %)	
E4	1M LiPF ₆ / ЕС + РС + DMC (30:5:65 об. %)	
E5	1M LiPF ₆ / EC + PC + DMC (30:5:65 об. %) + VC (4 мас. %) + PS (1 мас. %)	

Рис. 16. Залежності зарядних (1) та розрядних (1') ємностей АІ-електродів (з різною товщиною алюмінію) у електроліті *E1* від номера циклу. Товщина АІ: 21 мкм [121] (*a*); 1 мкм [227] (*б*)

Відносно стабільні величини накопиченої необоротної ємності упродовж декількох циклів у електролітах E2, E3 та E5 свідчать про формування достатньо щільного й еластичного ІПШІ, який слугує фізичним бар'єром між електродом та електролітом і здатен сприймати періодичні зміни об'єму електрода, підтримуючи при цьому власну цілісність. Відзначимо, що в електролітах E2та E3 (у порівнянні з традиційним складом електроліта E1) відбувається повільніше зростання накопиченої необоротної ємності з числом циклів.

Використання функціональних електро-

літів сприяє не лише зміцненню просторової організації електрода при формуванні ІПШ з покращенням утримуваності ємності, але й пригніченню електровідновлення також розчинників зi зменшенням частки необоротного накопичення літію. Найвищі характеристики забезпечує електроліт на основі FEC із сумішшю добавок VC та ES (формула ЕЗ); особливо це стосується таких параметрів як кулонівська ефективність першого циклу, оборотна ємність та її утримуваність при цикліюванні, а також накопичена необоротна ємність.

Рис. 17. Залежності розрядної (*a*) та накопиченої необоротної (б) ємностей Аl-електрода у РОЕ різного складу (*E1–E5*) від номера циклу [121]

В ілеалі ІПШ повинен складатися зі стабільних та нерозчинних сполук, таких як L_2O i Li_2CO_3 , a не метастабільних і розчинних, таких як ROLi i ROCO₂Li (R – низькомолекулярна алкильна група). Нерозчинність компонентів ІПШ важлива для низької накопиченої необоротної ємності, тому що втрата компонентів сприяє подальшому Згілно формуванню ІПШ. теоретичних розрахунків [228], розчинення Li₂O та Li₂CO₃ у РОЕ є ендотермічним процесом і тому вони малорозчинні при кімнатній температурі, а розчинення органічних сполук (CH2OCO2)2Li2 та LiOCO₂CH₃ є екзотермічним і вони більш розчинні, ніж LiOH, LiOCO₂C₂H₅, LiOCH₃, LiF, Li₂CO₃ і Li₂O. Однак, треба мати на увазі, що малорозчинні неорганічні сполуки можуть дифундувати в об'єм електроліту, коли вони оточені розчинними органічними сполуками.

Механізми відновлення електроліту на «незахищеній» поверхні електрода можуть відігравати суттєву роль лише на початку формування IIIII. У процесі акумулювання продуктів відновлення ці механізми змінюються, тому що поверхня стає електричним ізолятором (це можна розглядати як частину еволюції ІПШІ): потовщення неорганічного шару до певної межі приводить до того, що тунелювання електронів у ньому стає неможливим. Тому зростання ІПШІ відбувається з боку електроліту.

Оскільки циклічні карбонати мають більшу спорідненість до електрона, ніж лінійні, у суміші розчинників переважає саме їхн€ вілновлення. EC може бути електрохімічно відновлений (при потенціалах ~0.8 В відн. Li⁰/Li⁺) за 1ē- та 2ē-механізмами. Розкриття кільця ЕС несприятливо, якщо катіони Li⁺ у цьому процесі не залучені. Залежно від того, які зв'язки C-O розриваються, генерується CO, або C₂H₄. Загальноприйнятим є двостадійний механізм відновлення комплексів $Li^+(EC)_n$ (де n = 4-5) з утворенням аніон-радикалів •CH₂CH₂OCO₂-, координованих з Li⁺. На початкових стадіях зародження ІПШ продукується велика кількість радикалів, частина 3 яких залишається в електроліті та здатна поширювати реакції за участі його компонентів. Оскільки двоступеневі реакції відновлення не можуть проходити одночасно, продукти реакцій та склад ІПШІ згодом змінюються. З потовщенням внутрішнього неорганічного шару ІПШ доступ електронів зменшується, тому ЕС, найімовірніше, спочатку відновлюється за 2ē-механізмом, а потім переходить на 1ē-механізм. При цьому швидкість реакцій може відігравати навіть більш важливу роль, ніж потенціали відновлення.

Можливі продукти електровідновлення EC [229]: лінійні олігомери або полімери – поліетиленоксид LiO(CH₂CH₂O)_nLi (PEO); алкілкарбонати – CH₃CH₂OCO₂Li (LEC), (CH₂OCO₂)₂Li₂ (LEDC), ((CH₂)₂OCO₂)₂Li₂ (LiBDC), Li(CH₂)₂OCO₂Li; етери та алкоксиди – LiO(CH₂)₂OLi, CH₃CH₂OLi та карбонат літію – Li₂CO₃ за схемою:

Потрібно враховувати, що не кожна хімічна сполука, що утворюється на поверхні електрода, братиме участь у його пасивації. Більшість з перерахованих сполук € метастабільними (поступово відновлюються у наступних зарядних напівциклах аж до Li₂CO₃ та Li₂O) і частково розчиняються в електроліті. Це призводить до формування пористого та неоднорідного ІПШ, який не може запобігти перенесенню електронів що проявляється різким радикалами, зниженням оборотної ємності та кулонівської

ефективності з ростом числа циклів, особливо при використанні суміші ЕС з іншим диполярним розчинником – РС.

Склад електроліту може змінювати шлях реакцій та їхню кінетику. При уведенні у стандартний електроліт лише 2 мас. % VC формується відносно однорідний та ІПШ. стабільний завляки **V**ТВОРЕННЮ полікарбонатів і полі-VC (через механізм радикальної полімеризації з подвійним зв'язком) [230]:

та/або гетерогенних полімерів, зшитих упоперек PEO/полі-VC з аліфатичними функціональними ланцюгами (за допомогою відновлення до аніон-радикалів •CH=CHO⁻ (з виділенням СО₂) і утворення віноксилрадикалів. На відміну від лінійного РЕО, зшивання упоперек робить полімери міцнішими. Крім того, при додаванні VC реакція звичайна 2ē-відновлення EC пригнічується шляхом реагування VC з аніонрадикалами •CH₂CH₂OCO₂⁻. Однак утворення VC-похідних ІПШ призводить до відносно низьких величин кулонівської ефективності першого циклу та оборотної ємності через збільшення міжфазного опору (рис. 17).

Проблема вирішується уведенням в електроліт ще однієї добавки – сульфітної (ES або PS). За її допомогою в результаті утворення щільного неорганічного шару вже на початку зарядного напівциклу (ES відновлюється при потенціалах ~1.7 В відн. Li^{0}/Li^{+}), можна швидко заблокувати тунелювання електронів. Основні продукти (CH₃CH(OSO₂Li)CH₂OCO₂Li, відновлення $(CH_2OSO_2)_2Li_2$ ROSO₂Li, Li_2SO_3), які відповідають за це, є щільними та полярними утвореннями. Їх пасивуючі властивості можуть бути пов'язані з поліпшеною адгезією до поверхні електрода, завдяки властивій їм іонній структурі та полярності. Крім можливих електростатичних взаємодій між негативно зарядженою поверхнею електрода та іонами літію ціх сполук, наявність багатого літій компактного на полікристалічного шару неорганічних частинок, таких як Li₂SO₃, також може сприяти дифузії іонів Li⁺ крізь ІПШ. Утворення Li₂SO₃ набагато більш ймовірно у 2ē-процесі (з можливістю його подальшого відновлення до $Li_2S_2O_4$):

Завдяки синергічній дії обох добавок, pecypc пиклічний Al-електрода різко підвищується, навіть в електроліті з сумішшю ЕС та РС. Однак, кардинальне покращення електрохімічних параметрів досягається після повної заміни традиційного ЕС в електроліті на FEC (рис. 17). При цьому ІПШ стає ще тоншим, однорідним, щільним та стабільним завдяки утворенню еластичних y часі. полімерів та збагаченню неорганічного шару на Li₂CO₃ та LiF, які блокують доступ електронів до молекул розчинників.

Шляхи реакцій електровідновлення FEC мають більше варіацій, ніж EC. Можливі як 1ē-, так і багатоступінчасті 2ē-, 3ē- та 4ē-

механізми. Найбільш ймовірними видаються механізми проміжним утворенням 3 СНF=СН₂ та Li₂CO₃, або ЕС-радикалів при дефторуванні (з подальшою втратою СО2 та появою радикалів •OCH=CH₂ \leftrightarrow OCH-CH₂•, причому в ЕС-електроліті вони неможливі, тому що відновлення відбувається через розкриття кільця, а утворені сполуки, такі як • $CH_2CH_2OCO_2^-$, не можуть втрачати протони, утворилися віноксил-радикали). шоб Ĭх кінцевими продуктами € полімери полієнового типу (в тому числі зшиті впоперек Li⁺-провідні), полікарбонати, полі-FEC та полі-VC [231, 232]:

За даними дослідження [233], перевага ЕМС над DMC (та DEC) виникає завдяки тонкому балансу між продуктами реакцій електровідновлення ЕМС, які формують ІПШІ з кращою пасивуючою здатністю, ніж у випадку з DMC (або DEC). Ізолюючий шар у ЕМС містить більше Li_2CO_3 , який є надійним пасивуючим агентом. Це відбувається тому, що ROLi та ROCO₂Li (R = CH₃-, CH₃-CH₂-), які утворюються, більше розчинні у ЕМС, аніж у DMC, що збільшує вміст нерозчинного Li_2CO_3 у ІПШІ. Таким чином, для зменшення накопиченої необоротної ємності негативних електродів для ЛІА кращим є утворення в об'ємі ІПШІ на їх поверхні стабільних і нерозчинних у електроліті Li_2CO_3 та $(CH_2OCO_2)_2Li_2$, а не метастабільних і погано пасивуючих ROLi та ROCO_2Li (особливо

CH₃CH₂OLi та CH₃CH₂OCO₂Li).

Як виявлено у роботі [234], са́ме об'ємне співвідношення 3:7 для FEC/EMC (з формули електроліта E3) є оптимальним для формування міцного IIIIII і, як наслідок, найвищої кулонівської ефективності

цикліювання на прикладі Li-електрода (рис. 18). Воно пов'язане із необхідністю досягнення потрібного числа сольватації FEC (не менше одиниці) у комплексі Li[(FEC)_{1+x}(EMC)_{3-x}]⁺.

Рис. 18. Залежності кулонівської ефективності осадження–розчинення літію у розчинах 1,1 М LiPF₆ / FEC + EMC від співвідношення FEC/EMC [234]

Що стосується АІ-електрода, то зi збільшенням глибини його літіювання (особливо при утворенні надстехіометрічного сплаву $Li_{1+x}Al$) фольга починає розтріскуватися, поверхня всередині тріщин оголюється та може вкриватися ІПШ, який більшою мірою насичений неорганічними компонентами (у традиційних ЕС та РСвмісних електролітах без ІПШ-формуючих добавок) і, внаслідок цього, механічно більш жорсткий, ніж той, що формується до цього. Такий ІПШ ліє як клин. прискорюючи розтріскування фольги. Крім зниження оборотної ємності через втрату електричного контакту зі струмовідводом, це негативно впливає кінетику сплавоутворення, на оскільки придушується міграція іонів Li⁺ крізь ІПШ.

З іншого боку, міцний та еластичний ІПШІ (при додаванні у стандартний електроліт VC, а краще – синергічно діючої комбінації VC з ES та повною заміною EC на FEC) «пристосовується» до змін об'єму електрода, зберігаючи його структурну цілісність. Завдяки цьому, Аl-електрод (навіть при глибокому літіюванні) здатний тривалий час утримувати оборотну ємність незмінною. Таким чином, хоча глибоке літіювання Al-електрода само по собі є чинником створення механічної напруги, ця проблема природою ІПШ. посилюється Причому наслідки формування ΙПШ виявляються більш істотними, ніж безпосередньо зміни об'єму електрода [121]. «Constructing a robust and elastic solid electrolyte interphase (SEI) ... is an important strategy to suppress lithiuminventory loss and to prolong the lifespan of the state-of-the-art lithium-ion batteries» [235].

Як добавка в електроліт для роботи із конверсійними (кремнійвмісними) електродами FEC уперше був використаний дослідниками компанії Samsung, а са́ме у формулі: 1.3 M LiPF₆ / EC + DEC (30:70 об. %) + 3 мас. % FEC [236]. Згодом [219] була висловлена думка про корисність повної заміни EC на FEC, потім реалізована у роботах із гібридними «графіт-кремнієвими» електродами [220, 221, 237–240], і пізніше підтверджена іншими дослідницькими колективами [241-246]. Винайдений у [121] синергічний ефект комбінації добавок VC та ES був з часом застосований групою проф. J. Dahn для підвищення електрохімічних параметрів акумуляторів ламінатного типу з графітовим анодом [247]. Вартими серйозної уваги є також роботи, в яких пропонується лобавка POE нова лля [248] фторпропансульфонат та пікава формула електроліту із добавкою LiNO3: 0.8 M LiPF₆ / FEC + DMC (1:4 об.) + 5 мас. % LiNO₃ [249].

Питання про склад ІПШ залишається предметом багатьох дискусій. Ізолюючий шар різниться у зв'язку з різними умовами його формування. Тому неможливо нормалізувати та узагальнити склад або навіть компоненти ІПШ. Різноманітність реакцій формування ІПШ не дозволяє точно передбачити, яким саме шляхом вони підуть: з безлічі допустимих результатів можна оцінювати тільки ïχ ймовірності. Тому питання про корисність тієї чи іншої формули електроліта завжли цикліюванням напівелементів визначається (або прототипів акумуляторів) – обтяжливим методом проб і помилок. Алюмінієва фольга, у зв'язку з цим, є зручним матеріалом, а загальний підхід – методологічним прийомом прискореного складання прийнятної лля формули електролітів [250] при розробці електродів з іншими сплавоутворюючими елементами, зокрема – кремнієм.

«ВТОРИННІ» НАНОМАТЕРІАЛИ КРЕМНІЮ: СТВОРЕННЯ ПРИЙНЯТНИХ ДЛЯ ПРОМИСЛОВОСТІ Si-BMICHИХ ЕЛЕКТРОДІВ

Нанорозмірний кремній може уникати розтріскування частинок при електрохімічному літіюванні-делітіюванні у РОЕ [251], але висока питома поверхня порошку нанокремнію (нано-Si) та її гідрофільна природа із силанольними групами викликають низку негативних явищ: збільшення вмісту води в електроліті (додаткова вода виникає також через реакцію SiO2 із HF, який утворюється при гідролізі LiPF₆) і запуск каскадних реакцій за POF₃ PF5; vчасті HF. та формування пасивуючого шару (який перешкоджає міграції катіонів Li⁺) на поверхні наночастинок; їхнє «електрохімічне спікання», а також втрату електричних контактів зі струмовідводом.

Наявність силанольних функціональних груп на поверхні нано-Si призводить також до прискореної взаємодії з електролітом через істотну хімічну перебудову, яка викликана формуванням іонно–ковалентних зв'язків кремній–фтор: ≡Si–O–Si≡ ... ≡Si–OH → ≡Si–F [238, 252]. Фториди кремнію каталізують утворення фторованих вуглеводнів [253].

Частково проблема вирішується уведенням до РОЕ добавки триметилсилілізоціанату, яка здатна видаляти з нього НF та дезактивувати PF₅ [40], але загалом потребує нетрівіальних підходів щодо забезпечення хімічної та механічної стабільності ІПШІ і досягнення високої кулонівської ефективності цикліювання електродів з нано-Si.

Ефективною стратегією є застосування наноматеріалів «вторинних» кремнію З розмірами частинок на декілька порядків більшими, ніж у нанодоменів, які їх складають. У таких композитах використання обмежуючого каркасу [220, 240, 253] пригнічує виникнення механічних деформацій, i таким чином. покращує утримуваність оборотної ємності. Як приклад, на рис. 19 наведені порівняльні результати цикліювання двох електродів з порошком нанокремнію, на один з яких напилено тонкий шар W-покриття [254]. Наявність жорсткого каркасу сприяє збільшенню оборотної ємності електрода та суттєвому покращенню його циклічної стабільності у напівелементі з масивним Liпротиелектродом, але призводить до дуже великої різниці між зарядною та розрядною ємностями у кожному циклі, тобто викликає стрімке зростання накопиченої необоротної ємності. Це може бути пов'язано із електрокаталітичним процесом розкладання РОЕ на поверхні вольфрама, як у випадках із нікелем [132] та золотом [133].

Аналогічна картина спостерігається при використанні композиту зі вкритого міддю мезопористого кремнію – Cu@MP-Si (рис. 20): у першому зарядному напівциклі в області вище 1.0 В з'являється довга хвиля [255], яка, достатньо вірогідно, відповідає каталітичному електровідновленню РОЕ на поверхні міді. Зважаючи на ці результати, з метою зменшення ролі побічних процесів на електродах (і отримання низької накопиченої необоротної ємності), необхідні матричні матеріали іншої природи.

Ефективним виявилося застосування фуллерену як покриття тонкоплівкового кремнієвого електрода [256]. З цією метою мономери фуллерену були полімеризовані у високоенергетичній плазмі. При високій (3040 мА.год/г) оборотній ємності та відносно невеликій необоротній ємності (270 мА·год/г) вкритий фуллереном кремнієвий електрод відрізняється низькою накопиченою за 10 циклів необоротною ємністю, яка складає 479 мА год/г або 16 % оборотної [219]. від ємності Шілком

вірогідно, що полімерний шар фуллерену діє як штучний ізолюючий шар, який запобігає проникненню органічного електроліту до поверхні кремнію. Але іони літію можуть проходити крізь цей шар і реагувати з кремнієм. Очевидно, що на базальній площині полімеризованого фулле-рену утворюється відносно ефективний та такому стабільний ІПШ. Ha електроді вілсутня фрагментація як результат об'ємного розширення кремнію.

Рис. 19. Залежності зарядних (1, 2) та розрядних (1', 2') ємностей електродів з порошком нанокремнію: без (1, 1') та з W-покриттям (2, 2') від номера циклу [254]

Рис. 20. Зарядні (1, 2, 10, 40) та розрядні (1', 2', 10', 40') криві електродів на основі MP-Si (a) та композиту Си@MP-Si (б) [255]

Взагалі, вуглець високою 3 його 10^{3} Cm/cm). електроною провідністю (до низькою питомою вагою та незначним збільшенням об'єму при уведенні літію є ідеальним матеріалом матриці для (дослідження у рамках концепції «активна фаза / активна матриця»). Шар вуглецю на поверхні кремнію може виконувати олночасно підвищує лекілька функцій: провідність активного матеріалу (електропроводність кремнію ~10⁻⁴ См/см); діє як буфер, частково послаблюючи зміни об'єму сплаву при циклюванні; ізолює поверхню кремнію від безпосереднього контакту з компонентами електроліту (як дієва нами розглядається ідея використання са́ме «закритих» структур, у яких сплав, що утворюється, залишається в обмеженому просторі, без прямого доступу до електроліта, на відміну від стратегії «відкритих» структур для компенсації розбухаючого сплаву [27, 177, 257–261]).

Найдешевшим є метод інтенсивного подрібнення механічного кремнію. При композиту «кремній-графіт» синтезі У масовому співвідношенні 7:3 (КГ73) морфологія графіту зазнає незначних змін, а утворювані субмікронні частинки кремнію інкапсулюються тонкими графітовими шарами, які у першому заряд-розрядному циклі деякою мірою ізолюють їх від прямого контакту з електролітом [237, 262]. Це дає відносно високу величину E_1 (92.6%) гібридного електрода MAG (massive artificial +КГ73 (95:5 мас. %) graphite) при $Q_{\text{rev}} = 445 \text{ мА} \cdot \text{год/г}$ (рис. 21 *a*), що приблизно на 30 % більше, ніж при використанні в електроді тільки графіту MAG $(Q_{\rm rev} = 345.5 \text{ мА} \cdot \text{год/г}).$

На залежності « $Q_{airr} - n$ » (рис. 21 б) вирізняються області формування нестабільного первинного, динамічного (проміжного) та стабільного (вторинного) ІПШ. Накопичена необоротна ємність при цьому змінюється від 35.6 мА год/г на першому до 175 мА год/г – на 102-му циклі. Настільки велика різниця є аргументом на скептичного ставлення користь пропонованого деякими дослідниками методу «попереднього літіювання» (прямому контакту металевого літію активним 3 матеріалом негативного електрода ЛІА), оскільки при цьому необоротна ємність першого циклу дійсно зменшується, але не усуваються причини динамічної поведінки ІПШ (з перебігом вторинних реакцій та процесів розчинення-осадження його компонентів).

Рис. 21. Заряд (1, 2, 3, 52, 102) – розрядні (1', 2', 3', 52', 102') криві (а) та залежності зарядної (1) і розрядної (1') ємностей, кулонівської ефективності циклів (2) та накопиченої необоротної ємності (3) від номера циклу (б) напівелемента Li || MAG + КГ73 (95:5 мас. %) с 3 мас. % суміші зв'язуючих CMC+SBR (5:1 мас) [237]

Рис. 22. Залежності накопиченої необоротної ємності від номера циклу при гальваностатичному зарядрозряді дискових елементів SiGr || LiFePO₄ з різним вмістом кремнію у негативному електроді (L = 1.8–2.3 мА·год/см²) [263]

Аналогічну картину (для розуміння природи необоротних процесів за участі графіт-кремнієвих (SiGr) електродів на різних стадіях циклічного pecypcy) спостерігали (рис. 22) у роботі [263], де накопичену необоротну ємність розраховували за формулою:

$$\sum Q_{irr} = \sum_{i}^{120} \left(Q_{i}^{lithiation} - Q_{i}^{delithiation} \right)$$
(24)

Для стабілізації ІПШ на Si-вмісних електродах, крім електроліту з FEC (замість

EC) та комбінації добавок VC+ES, уперше застосований склоподібний вуглець (СВ) – збагачений вуглецем оксикарбід кремнію (SiOC&C), як безпориста матриця/покриття активних частинок [259]. Електрод із 7(95MAG+5KГ73)@3CB композиту демонструє вищу E_1 (93.0 %) та нижчу $Q_{airr(52)}$ (94.0 мА год/г проти 155 мА год/г у електрода з активним матеріалом без CB) при Q_{rev}, рівним 425 мА год/г, а також із доволі високою величиною R_{52} , що складає 94.8 % (рис. 23).

Рис. 23. Залежності зарядної (1) та розрядної (1') ємностей, кулонівської ефективності циклів (2) та накопиченої необоротної ємності (3) від номера циклу напівелемента Li || (95MAG+5KГ73)@CB (7:3 мас) з 3 мас.% суміші зв'язуючих CMC+SBR (5:1 мас). Електроліт – *E3*. *L* = 2.5 мА·год/см² [259]

Ше більш ефективною виявилася стратегія розміщення наночастинок кремнію безпо-середньо у жорсткому каркасі СВ, запобіганню завдяки прямого контакту електроліта з поверхнею кремнію та агрегації його наночастинок [177] (ця робота надихнула спеціалістів корпорації Umicore на отримання патентів [264, 265]).

Характерною особливістю синтезу композиту нано-Si@SiOC&C є запобігання утворення агломератів наночастинок, завдяки стабілізуючому впливу шару органічних молекул, які пасивують їхню поверхню ще до початку карбонізації. Кожна наночастинка кремнію «вкладена» в «обойму» з CB, який слугує електропровідним містком між окремими частинками та виконує обов'язки зв'язуючого між ними.

Завдяки монодисперсності нанокремнію та стабільному розміру прошарків СВ, даний композит характеризується однорідністю. При високотемпературній обробці силанольні групи видаляються з поверхні наночастинок і через їхню високу поверхневу енергію відбувається сильна взаємодія між кремнієм і СВ.

Розширення піків для граней (111) і (220) на нано-Si спектрах ΡΦΑ та керамічного свідчать, розміри композиту ЩО монокристалічних областей не перевищує 19-20 нм і не змінюються при переході від нано-Si до (рис. 24 а). композиту Представлений на рис. 24 б спектр КРС дає інформацію про ступінь кристалічності компонентів композиту. Характерним для нього, незалежно від хімічного складу вихідного полісилоксана, є особливий характер поєднання піків 2D та D* (D+G), що підтверджується порівнянням цих спектрів у роботах [259] та [266].

На підставі ізотерми десорбції азоту з поверхні композиту (методом ВЈН) проведені розрахунки розподілу за розмірами та сумарного об'єму пор (рис. 24 *в*). Мезопориста

структура композиту не розвинена: об'єм мезопор D_p становить менше 0.02 см³/г. Розподіл пор за розмірами вузький: в інтервалі $D_p = 2-50$ нм проявляється слабо виражений пік dS_p/dD_p в області близько 9 нм і максимум при 2.5 нм. Тому по відношенню до органічного електроліту композит можна розглядати як

безпористий матеріал, в якому процес утворення літійованих фаз здійснюється десольватованими іонами Li⁺ вздовж вузьких каналів у структурі СВ. При цьому ефективно вирішується дилема високої площі поверхні та низької насипної густини при використанні наночастинок кремнію.

Рис. 24. Дифрактограми (*a*) нанопорошку кремнію (світла) та керамічного композиту нано-Si@SiOC&C (темна), спектр КРС (*б*) та криві розподілу пор за розмірами (*в*) [259]

Висока механічна міцність CB (SiOC&C), здатність розміщувати у своєму об'ємі відносно велику кількість літію, утворення при синтезі композиту структурно-інтегрованої межі поділу відсутність фаз iз кремнієм та електрокаталітичної активності цього матеріалу по відношенню до органічного електроліту (з FEC, VC та ES) дозволяють акомодувати (без розтріскування) об'ємні зміни наночастинок кремнію при літіюванні-делітіюванні, а також формувати тонкий, міцний та стабільний ІПШ на поверхні СВ, що й забезпечує високі електрохімічні параметри гібридних електродів із керамічним композитом нано-Si@SiOC&C.

У композиті нано-Si@SiOC&C насичення сплаву літієм відбувається в обмеженому розмірами вуглецевої матриці об'ємі, тиск у замкненому просторі зростає, що приводить до ущільнення структури та підвищення рівня її організації [267]. Досить розгалужений простір між хаотично розташованими гексагональними кластерами (мікро-порожнини) матриці 31 жорсткого вуглецю сприяє акомодації об'ємних змін при літіюванні-делітіюванні частинок Li_xSi. Інакше кажучи, зміна об'єму в деякій мірі компенсується внутрішньою пористістю структури композиту. Цi результати укладаються в межі запропонованої [268] теорії щодо можливості акомодації великих деформацій, якими супроводжується утворення

сплаву Li_xSi. Суть її полягає у тому, що наночастинки кремнію при літіюванні значною мірою «розм'якшуються», а перебіг локальної хімічної реакції взаємодії літію та кремнію сприяє механічному потоку сплаву з більш низьким рівнем напруги.

Відсутність жорстких зв'язків між суміжними графеновими шарами додає матеріалу пружності. Властива системі графенових шарів еластичність (висока буферуюча здатність) дозволяє локалізувати літій-кремнієвий сплав у жорстких межах та розтріскування позбавитися активного матеріалу. Крім цього, графенові шари створюють провідні шляхи для транспорту електронів та іонів літію, підвищуючи електропровідність активного материалу та швидкість міграції у ньому літію.

Слід відзначити, що при обраній стратегії немає необхідності у пошуку незвичних зв'зуючих із особливими властивостями (важлива проблема при об'ємних змінах кремнійвмісних частинок у випадку вибору стратегії «відкритої» структури), оскільки можна використовувати дешеву й екологічно чисту суміш бутадієнстиролового каучуку (SBR) й натрій-карбоксиметилцелюлози (CMC).

Оскільки наявність силанольної води у композиті виключена, ініційовані нею побічні

реакції стають неможливими. Завдяки цьому величини E_1 електродів із композитом нано-Si@SiOC&C досить високі та становлять 90.5 % (при 5 мас. % у суміші з MAG) та 86.6 % (50 мас. %). Це також є аргументом на користь сумнівів щодо можливості електрохімічного відновлення SiO₂ на поверхні нано-Si з необоротним зв'язуванням іонів літію.

Завдяки механічним та антикорозійним властивостям СВ (як матриці композиту), ІПШ швидко стає стабільним (рис. 25). При $Q_{\rm rev} = 434 \, {\rm MA} \cdot {\rm год}/{\Gamma}$ ловолі високій $(L = 2.5 \text{ мА} \cdot \text{год/см}^2),$ величина $Q_{\text{airr}(102)}$ виявляється відносно низькою 80.6 мА·год/г, що £ прийнятним для промислових ЛІА.

Рис. 25. Заряд (1, 2, 3, 52, 102) – розрядні (1', 2', 3', 52', 102') криві (а) та залежності зарядної (1) та розрядної (1') ємностей, кулонівської ефективності циклів (2) та накопиченої необоротної ємності (3) від номера циклу (б) напівелемента Li || 95MAG+5нано-Si@SiOC&C (7:3 мас) з 3 мас. % суміші зв'язуючих CMC+SBR (5:1 мас). L = 2.5 мА·год/см². Електроліт – E3 [259]

Чим вище параметр L для робочого електрода у напівелементах, тим швидше настає інактивація літієвого протиелектрода. Це виявляється у вигляді низької утримуваності ємності гібридного електрода з 50 мас. % композита при високій навантажувальній ємності L, яка дорівнює 6.8 мА·год/см², але у дійсності нею не є. Доказом слугує різке збільшення оборотної ємності при заміні відпрацьованого Li-протиелектрода на новий (рис. 26).

Рис. 26. Залежності питомої ємності гібридного електрода на основі суміші нано-Si@SiOC&C + MAG (1:1) із L = 6.8 мА·год/см² від номера цикла при периодичній заміні у напівелементі Li-протиелектрода (*a*) і заряд–розрядні криві цього напівелемента (δ , ϵ)

Менш щільна структура *a*-Si сприяє зниженню механічної напруги при цикліюванні сплаву Li_xSi. Завдяки цьому керамічний 3Dкомпозит із аморфного 2D-Si (2D ⊃ мікро-3D) має кращі електрохімічні параметри, ніж із кристалічного 0D-Si (0D ⊃ мікро-3D) із його однаковим (~70 мас. %) вмістом, що видно із аналізу даних, представлених у таблиці 4.

Таблиця 4. Порівняльні характеристики керамічних нанокомпозітів із однаковим (~70 мас. %) вмістом кремнію

Параметри	Композит	<i>к</i> -Si@SiOC&C (0D⊃мікро-3D)	<i>a-</i> Si@SiOC&C (2D ⊃ мікпо-3D)
Діаметр частинок (D ₉₀), мкм	1	6	26
Склад електродів, мас%		95[а.м.+Г(50/50)]+ 2.5CMC+ +0.5SBR	93[а.м.+Г+ВВ(50/48/2)]+ +4.5СМС+2.5SBR
Ємність, мА·год/г [см ²]		1406/1218 [6.8]	1303/1214 [5.3]
Початкова товщина, мкм		37	40
Кінцева товщина52, мкм		58/52	53/50
$Q_{ m airr(52)},$ м $ m A\cdot$ год/г		522	287

а.м. – активна маса; Г – графіт; ВВ – вуглецеві волокна

Таким чином, створення прийнятних для промисловості Si-вмісних електродів з високою навантажувальною та низькою накопиченою необоротною ємностями є можливим, виключно завдяки ефективному керуванню фізико-хімічними процесами у триєдиній системі «електрод – ізолюючий поліфункціональний шар – рідкий органічний електроліт».

ВИСНОВКИ

1. Сформульовані наукові принципи протидії великим змінам об'єму конверсійних матеріалів при (де)літіюванні, усуненню негативного впливу мікроструктурних перетворень та зведення до мінімального рівня небажаних побічних реакцій з електролітом: модифікування поверхні, наноструктурування та розміщення в електрохімічно активній матриці, застосування новітніх полімерних зв'язуючих, уведення домішок до електроліту, особливі умови цикліювання. Доведена використання необхідність накопиченої необоротної ємності (Qairr, яка є інтегральним показником необоротного «зв'язування» літію) у напівелементах досліджуваних електродів, як їхнього ключового характеристичного параметра, що характеризує ефективність ІПШ та є критерієм оцінки практичної придатності електродів, які розробляються.

2. На відміну від традиційного механізму формування ІПШ – блокування процесу тунельного переносу електронів, запропоно-

вано механізм. заснований на перебігу вторинних реакцій та процесів розчиненняосалження. шо сприяють накопиченню електрохімічно стійких і менш розчинних продуктів відновлення компонентів електроліту. Показано, що формування ІПШ на межі поділу «електрод РОЕ» не закінчується на перших циклах заряду-розряду (його необхідно розглядати лише як початкову стадію), а потребує (у кращих випадках) ще мінімум 30-40 пиклів еволюнії та подальшого «припасовування». Таким чином, доведена динамічна природа функціонування ІПШ з можливістю його перебудови із нестабільного стану до стабільного.

3.У рамках системного підходу ло розробки триєдиного комплексу «електрод-ІПШ-РОЕ» запропоновані новітні «формули» рідких органічних електролітів із прогносинергічними властивостями. У зованими складі цих електролітів (замість етиленкарбонату) використовується фторетиленкарбонат i застосована суміш взаємопідсилюючих функціональних добавок – етиленсульфіту і вініленкарбонату. Це дозволяє спрямовано формувати механічно міцний та еластичний. хімічно та електрохімічно стабільний, нерозчинний у РОЕ, щільний та тонкий IIIII із уніполярною Li⁺-провідністю та високою адгезією до поверхні електрода, що суттєво покращує параметри цикліювання конверсійних електродів.

4. Для стабілізації ІПШ на Si-вмісних

електродах, крім нових «формул» електролітів, застосовано збагачений вуглецем оксикарбід кремнію SiOC&C (склоподібний вуглець, CB) як матриця/покриття активних частинок, яка захищає поверхню кремнію від небажаних реакцій з електролітом і залишками у ньому води та HF, а також виконує роль шляхів перенесення електронів та іонів літію. Інкапсулювання гексагональних кластерів (одно- та багатошарових графенових утворень) в об'ємі СВ ефективно вирішує дилему великої поверхні та низької густини, що виникає при прямому використанні графену як анодного матеріалу для ЛІА. У процесі синтезу композитів Si@SiOC&C (0D ⊃ мікро-3D та 2D ⊃ мікро-3D) усуваються активні центри у вигляді силанольних груп і формується структурно-інтегрована межа поділу між кремнієм і СВ. При використанні дуже малої кількості (~3 мас. %) суміші екологічно безпечних полімерних зв'язуючих на водній основі (SBR+CMC) вдається забезпечити високу навантажувальну ємність кремнійвмісних електродів (до 5.3 мА·год/см² проти 2.0 мА·год/см² у промислових графітових) і при цьому домогтися низької величини $Q_{\rm airr}$ (до 25 % від оборотної ємності, як у графітових електродів) швидкого формування та стабільного ІПШ.

The triad "electrode – solid electrolyte interphase – electrolyte" as a ground for the use of conversion type reactions in lithium-ion batteries

S.P. Kuksenko, H.O. Kaleniuk, Yu.O. Tarasenko, M.T. Kartel

Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine 17 General Naumov Str., Kyiv, 03164, Ukraine, sergii.kuksenko@nas.gov.ua

The solution to the problem of negative impact on the ecology of fossil fuel consumption is the use of electrochemical energy sources. The special attractiveness has shown of lithium power sources is highlighted and the need to develop new cheap electrode materials and electrolytes with unique properties. The peculiarities of the behavior of lithium and the formation of a layer of reaction products on its surface upon contact with a liquid organic electrolyte have considered. The analysis of the main problems and ways of their solution at use of conversion electrodes of the II type for lithium-ion batteries has carried out. Emphasis is placed on the need to use in the development of new electrode materials of such parameters as capacity loading and accumulated irreversible capacity of the electrodes. The triad "electrode – solid electrolyte interphase – electrolyte" is considered as a basis of a systematic approach to the creation of new generations of lithium power sources. The optimal scenarios have proposed for the formation of an effective solid electrolyte interphase on the surface of the electrodes. The advantages of electrolytes based on fluoroethylene carbonate with synergistic acting additives of vinylene carbonate and ethylene sulfite are described. A new strategy for the use of "secondary" silicon nanomaterials to prevent direct contact of its surface with the electrolyte has considered. It has shown that the solid electrolyte interphase is a dynamic system that self-organizes from the unstable state into a stable one. The electrochemical behavior of electrodes with silicon nanocomposites with high capacity loading and low accumulated irreversible capacity has described.

Keywords: lithium, aluminum, silicon, graphite, carbon-riched silicon oxycarbide (glass-like carbon), graphene, fluoroethylene carbonate, water-based polymeric binders, negative conversion electrodes, liquid organic electrolytes, electrolyte additives, solid electrolyte interphase, loading capacity, accumulated irreversible capacity, lithium-ion batteries

ЛІТЕРАТУРА

- 1. *Choi J.W., Aurbach D.* Promise and reality of post-lithium-ion batteries with high energy densities // Nat. Rev. Mater. -2016. V. 1, N 4. P. 16013/1-16.
- 2. Manthiram A. An outlook on lithium ion battery technology // ACS Cent. Sci. 2017. V. 3, N 10. P. 1063–1069.
- Opitz A., Badami P., Shen L. et al. Can Li-Ion batteries be the panacea for automotive applications? // Renewable Sustainable Energy Rev. – 2017. – V. 68, Part 1. – P. 685–692.
- 4. Schmuch R., Wagner R., Horpel G. et al. Performance and cost of materials for lithium-based rechargeable automotive batteries // Nat. Energy. 2018. V. 3, N 4. P. 267–278.
- 5. *Cano Z.P., Banham D., Ye S. et al.* Batteries and fuel cells for emerging electric vehicle markets // Nat. Energy. 2018. V. 3, N 4. P. 279–289.
- 6. Zeng X., Li M., Abd El-Hady D., Alshitari W. et al. Commercialization of Lithium Battery Technologies for Electric Vehicles // Adv. Energy Mater. 2019. V. 9, N 27. P. 1–25.
- Marinaro M., Bresser D., Beyer E. et al. Bringing forward the development of battery cells for automotive applications: Perspective of R&D activities in China, Japan, the EU and the USA // J. Power Sources. 2020. V. 459. P. 228073.
- 8. *Maletin Yu., Stryzhakova N., Zelinskyi S. et al.* New Approach to Ultracapacitor Technology: What it Can Offer to Electrified Vehicles // Journal of Power and Energy Engineering. 2015. V. 9, N 6. P. 585–591.
- 9. *Maletin Yu., Stryzhakova N., Zelinskyi S. et al.* Electrochemical Double Layer Capacitors and Hybrid Devices for Green Energy // Green. 2014. V. 4 P. 9–17.
- Patent US 2014/0085773. H01G11/06. Chernukhin S., Tretyakov D., Maletin Yu. Hybrid electrochemical energy storage device. – Опубл. 2014.
- Patent US 7,006,346 B2. HO1G 9/00, 9/145. Volfkovich Yu.M., Rychagov A.Y., Urisson N.A., Serdyuk T.M. Positive Electrode of an Electric Double Layer Capacitor. – Опубл. 2006.
- 12. *Weppner W., Huggins R.* Determination of the kinetic parameters of mixed-conducting electrodes and applications to the system Li₃Sb // J. Electrochem. Soc. 1977. V. 124, N 10. P. 1569–1578.
- 13. Goodenough J.B., Kim Y. Challenges for rechargeable Li batteries // Chem. Mater. 2010. V. 22, N 3. P. 587–603.
- 14. *Hayashi M., Arai H., Ohtsuka H., Sahurai Y.* Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as calcium hosts // J. Power Sources. 2003. V. 119–121. P. 617–620.
- Rong Z., Malik R., Canepa P. et al. Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures // Chem. Mater. – 2015. – V. 27. – P. 6016–6021.
- 16. *Placke T., Kloepsch R., Dühnen S., Winter M.* Lithium Ion, Lithium Metal, and Alternative Rechargeable Battery Technologies: The Odyssey for High Energy Density // J. Solid State Electrochem. 2017. V. 21. P. 1939–1964.
- 17. *Canepa P., Gautam G.S., Hannah D.C. et al.* Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges // Chem. Rev. 2017. V. 117, N 5. P. 4287–4341.
- 18. *Anji R.M., Fichtner M.* Batteries based on fluoride shuttle // J. Mater. Chem. 2011. V. 21, Iss. 43. P. 17059–17062.
- 19. Wang F., Wu X., Li C. et al. Nanostructured positive electrode materials for post-lithium ion batteries // Energy Environ Sci. 2016. V. 9, Iss. 12. P. 3570–3611.
- 20. Sarma D.D., Shukla A.K. Building Better Batteries: A Travel Back in Time // ACS Energy Lett. 2018. V. 3, N 11. P. 2841–2845.
- Goodenough J.B. Battery components, active materials for // In: Batteries for Sustainibility: Selected Entries from the Encyclopedia of Sustainibility Science and Technology. Springer Sci.: New York, NY, USA. – 2013. – P. 51–92.
- Holmes C. The Lithium/Iodine-Polyvinylpyridine Pacemaker Battery 35 years of Successful Clinical Use // ECS Trans. – 2007. – V. 6, N 5. – P. 1–7.
- 23. Goodenough J.B. Energy Storage Materials: A Perspective // Energy Storage Mater. 2015. V. 1. P. 158-161.
- 24. Palacin M.R., de Guibert A. Why Do Batteries Fail? // Science. 2016. V. 351, Iss. 6273. P. 1253292.
- 25. Evarts E.C. To the Limits of Lithium // Nature. 2015. V. 526, N 7575. P. S93–S95.
- 26. Julien C., Mauger A., Vijh A., Zaghib K. Lithium Batteries: Science and Technology. Springer Int. Publ. Switzerland, 2016. P. 34.
- 27. Куксенко С.П., Тарасенко Ю.О., Картель М.Т. a-Si@SiOC&C (2D⊃мікро-3D) новий нанокомпозит для літій-іонних акумуляторів наступного покоління // Звітна наукова сесія за проектами цільової програми наукових досліджень НАН України «Нові функціональні речовини і матеріали хімічного виробництва». (Київ, ІФХ НАН України, 14 грудня 2017 р.). Тези доповідей. С. 31–32.
- 28. *Куксенко С.П., Каленюк Г.О., Тарасенко Ю.О., Картель М.Т.* Стабільні кремнієві електроди з полівініліденфторид-зв'язуючим для літій-іонних акумуляторів // Хімія, фізика та технологія поверхні. 2020. Т. 11, № 1. С. 58–71.

- Kang B., Ceder G. Battery materials for ultrafast charging and discharging // Nature. 2009. V. 458, N 7235. P. 190–193.
- Scrosati B., Garche J. Lithium batteries: Status, prospects and future // J. Power Sources. 2010. V. 195, N 9. P. 2419–2430.
- 31. Janek J., Zeier W.G. A Solid Future for Battery Development // Nat. Energy. 2016. V. 1. P. 16141.
- Qian J., Adams B.D., Zheng J. et al. Anode–Free Rechargeable Lithium Metal Batteries // Adv. Funct. Mater. 2016. – V. 26, Iss. 39. – P. 7094–7102.
- Tian Y., An Y., Wei C. et al. Recently advances and perspectives of anode-free rechargeable batteries // Nano Energy. - 2020. - V. 78. - P. 105344.
- 34. *Nanda S., Gupta A., Manthiram A.* Anode–Free Full Cells: A Pathway to High–Energy Density Lithium–Metal Batteries // Adv. Energy Mater. 2020. V. 11, Iss. 2. P. 200804.
- 35. https://www.marketwatch.com/press-release/lithium-ion-battery-market-is-set-to-grow-us-69-billion-by-2022-2019-01-07
- Dunn B., Kamath H., Tarascon J.-M. Electrical Energy Storage for the Grid: A Battery of Choices // Science. 2011. – V. 334, Iss. 6058. – P. 928–935.
- 37. *Kim T.-H., Park J.-S., Kyun C.S. et al.* The Current Move of Lithium Ion Batteries Towards the Next Phase // Adv. Energy Mater. 2012. V. 2, N 7. P. 860–872.
- 38. https://www.navigantresearch.com/research/navigant-research-leaderboard-lithium-ion-batteries-for-grid-storage
- 39. Куксенко С., Тарасенко Ю. Алюмінієва фольга як негативний електрод для високоенергоємних літійіонних акумуляторів // Звітна наукова сесія за проектами цільової програми наукових досліджень НАН України «Нові функціональні речовини і матеріали хімічного виробництва». (Київ, ІФХ НАН України, 13 грудня 2018 р.). Тези доповідей. – С. 30–31.
- Куксенко С.П., Каленюк Г.О, Тарасенко Ю.О., Картель М.Т. Вплив електролітної добавки триметилсилілізоціанату на властивості електрода з нанокремнієм для літій–іонних акумуляторів // Хімія, фізика та технологія поверхні. – 2021. – Т. 12, № 1. – С. 67–78.
- 41. *Yuca N., Taskin O.S., Arici E.* An overview on efforts to enhance the Si electrode stability for lithium ion batteries // Energy Storage. 2020. V. 2, N 1. P. e94/1–15.
- 42. *Sturm J., Rheinfeld A., Zilberman I. et al.* Modeling and simulation of inhomogeneities in a 18650 nickel-rich, silicon-graphite lithium-ion cell during fast charging // J. Power Sources. 2019. V. 412. P. 204–223.
- 43. https://datasheetspdf.com/pdf-file/974431/Panasonic/NCR18650BF/1
- 44. *Willenberg L.K., Dechent P., Fuchs G. et al.* High-Precision Monitoring of Volume Change of Commercial Lithium-Ion Batteries by Using Strain Gauges // Sustainability. 2020. V. 12, N 2. P. 28–42.
- 45. *Anseán D., Baure G., González M. et al.* Mechanistic investigation of silicon-graphite / LiNi_{0.8}Mn_{0.1}Co_{0.1}O₂ commercial cells for non-intrusive diagnosis and prognosis // J. Power Sources. 2020. V. 459. P. 227882.
- 46. *Eisele L., Skrotzki J., Schneider M. et al.* Coating of Li_{1+x}[Ni_{0.85}Co_{0.10}Mn_{0.05}]_{1-x}O₂ Cathode Active Material with Gaseous BF₃ // J. Electrochem. Soc. 2020. V. 167, N 12. P. 120505.
- Mohanty D., Mazumder B., Devaraj A. et al. Resolving the degradation pathways in high-voltage oxides for highenergy-density lithium-ion batteries; Alternation in chemistry, composition and crystal structures // Nano Energy. – 2017. – V. 36. – P. 76–84.
- 48. *Куксенко С.П., Данилин В.В., Скакальский А.И. и др.* Особенности разрядных характеристик путовичных литиевых элементов с оксидномедным катодом // Журнал прикладной химии. 1992. Т. 65, № 8. С. 1780–1785.
- 49. *Kojima T., Ishizu T., Horiba T., Yoshikawa M.* Development of lithium-ion battery for fuel cell hybrid electric vehicle application // J. Power Sources. 2009. V. 189, N 1. P. 859–863.
- Cabana J., Monconduit L., Larcher D., Palacin M.R. Beyond Intercalation–Based Li–Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions // Adv. Mater. – 2010. – V. 22, Iss. 35. – P. E170–E192.
- 51. Park C.-M., Kim J.-H., Kim H., Sohn H.-J. Li-alloy anode materials for secondary batteries // Chem. Soc. Rev. 2010. V. 39, N 8. P. 3115–3141.
- 52. *Nitta N., Yushin G.* High–Capacity Anode Materials for Lithium–Ion Batteries: Choice of Elements and Structures for Active Particles // Part. Part. Syst. Charact. 2014. V. 31, N 3. P. 317–336.
- 53. *Nitta N., Wu F., Lee J.T., Yushin G.* Li–ion battery materials: present and future // Mater. Today. 2015. V. 18, Iss. 5. P. 252–264.
- 54. Xu W., Wang J., Ding F. et al. Lithium metal anodes to rechargeable batteries // Energy Environ. Sci. 2014. V. 7, Iss. 2. P. 513–537.
- 55. *Kasavajjula U., Wang C., Appleby A.J.* Nano- and bulk-silicon based insertion anodes for lithium-ion secondary cells // J. Power Sources. 2007. V. 163, N 2. P. 1003–1039.
- 56. Obrovac M.N., Chevrier V.L. Alloy Negative Electrodes for Li–Ion Batteries // Chem. Rev. 2014. V. 114, Iss. 23. P. 11444–11502.

- 57. Zuo X., Zhu J., Müller-Buschbaum P., Cheng Y.-J. Silicon based lithium ion battery anodes: A chronicle perspective review // Nano Energy. 2017. V. 31. P. 113–143.
- 58. Obrovac M.N., Christensen L. Structural changes in silicon anodes during lithium insertion/extraction // Electrochem. Solid-State Lett. 2004. V. 7, N 5. P. A93–A96.
- Obrovac M.N., Krause L.J. Reversible cycling of crystalline silicon powder // J. Electrochem. Soc. 2007. V. 154, N 2. – P. A103–A108.
- 60. Zhang W.-J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries // J. Power Sources. 2011. V. 196, N 1. P. 13-24.
- 61. *Tirado J.L.* Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects // Mater. Sci. Eng. R. 2003. V. 40, N 3. P. 103–136.
- 62. *Idota Y., Kubota T., Matsufuji A. et al.* Tin-based amorphous oxide: a high-capacity lithium-ion-storage material // Science. 1997. V. 276, N 5317. P. 1395–1397.
- 63. *Inoue H.* High capacity negative electrode materials next to carbon: Nexelion // Book of Abstracts, IMLB-2006. Biarritz, France. June 18–23, 2006. Abstr. 228.
- Hamon Y., Brousse T., Jousse F. et al. Aluminum negative electrode in lithium ion batteries // J. Power Sources. 2001. – V. 97–98. – P. 185–187.
- 65. *Wang C.Y., Meng Y.S., Ceder G., Li Y.* Electrochemical Properties of Nanostructured Al_{1-x}Cu_x Alloys as Anode Materials for Rechargeable Lithium-Ion Batteries // J. Electrochem. Soc. 2008. –V. 155, N 9. P. A615–A622.
- 66. Ui K., Minami T., Ishikawa K. et al. Application to Negative Electrode for Lithium Secondary Batteries of Electroplated Aluminum Electrode // Electrochemistry. 2005. V. 73, N 4. P. 279–283.
- 67. *Chen Z.X., Qian J.F., X. Ai X.P. et al.* Electrochemical performances of Al-based composites as anode materials for Li-ion batteries // Electrochim. Acta. 2009. V. 54, Iss. 16 P. 4118–4122.
- Lei X., Xiang J., Ma X. et al. Surface modification of aluminum with tin oxide coating // J. Power Sources. 2007. – V. 166, N 2. – P. 509–513.
- 69. Lei X., Wang C., Yi Z. et al. Effect of particle size on the electrochemical properties of aluminum powders as anode materials for lithium ion batteries // J. Alloy Compd. 2007. V. 429, N 1–2. P. 311–315.
- Lindsay M.J., Wang G.X., Liu H.X. Al-based anode materials for Li-ion batteries // J. Power Sources. 2003. V. 119–121. – P. 84–87.
- Fleischauer M.D., Obrovac M.N., Dahn J.R. Al-Si Thin-Film Negative Electrodes for Li-Ion Batteries // J. Electrochem. Soc. – 2008. – V. 155, N 11. – P. A851–A854.
- 72. *Fleischauer M.D., Obrovac M.N., Dahn J.R.* Simple Model for the Capacity of Amorphous Silicon-Aluminum-Transition Metal Negative Electrode Materials // J. Electrochem. Soc. – 2006. – V. 153, N 6. – P. A1201–A1205.
- 73. *Jeong G.J., Kim Y.U., Sohn H.J., Kang T.* Particulate-reinforced Al-based composite material for anode in lithium secondary batteries // J. Power Sources. 2001. V. 101, N 2. P. 201–205.
- 74. *Trifonova A.V., Momchilov A.A., Puresheva B.L., Abrahams I.* Electrochemical lithium intercalation in lead-tinaluminium solder // Solid State Ionics. – 2001. – V. 143, N 3–4. – P. 319–328.
- 75. Patent US 4,002,492. Rao B.M.L. Rechargeable lithium-aluminium anode. Publ. 1977.
- 76. McAlister A.J. The Al–Li (Aluminum–Lithium) system // Bull. Alloy Phase Diagrams. 1982. V. 3. P. 177–183.
- ASM Handbook. Alloy Phase Diagrams / H. Baker (Ed.). ASM International, Materials Park, Ohio. 1992. P. 2–47.
- Thackeray M.M., Vaugheya J.T., Johnson C.S. et al. Structural considerations of intermetallic electrodes for lithium batteries // J. Power Sources. – 2003. – V. 113, N 1. – P. 124–130.
- 79. *Lee J.-I., Song G., Cho S. et al.* Lithium metal interface modification for high energy batteries: approaches and characterization // Batteries Supercaps. 2020. V. 3, Iss. 9. P. 828–859.
- Eshetu G.G., Figgemeir E. Confronting the Chellenges of Next Generation Silicon Anode Based Lithium Ion Batteries: Role Designer Electrolyte Additives and Polymeric Binders // ChemSusChem. – 2019. – V. 12, N 12. – P. 2515–2539.
- 81. *Jeppson D.W., Ballif J.L., Yuan W.W., Chou B.E.* Lithium Literature Review: Lithium's Properties and Interactions. Hanford Engineering Development Laboratory: Richland, WA, USA, 1978. 109 p.
- 82. *Hong S.-T., Kim J.-S., Lim S.-J., Yoon W.Y.* Surface Characterization of Emulsified Lithium Powder Electrode // Electrochim. Acta. 2004. V. 50, N 2–3. P. 535–539.
- 83. *Wang K., Ross P.N., Kong F., McLarnon F.* The Reaction of Clean Li Surfaces with Small Molecules in Ultrahigh Vacuum: I. Dioxygen // J. Electrochem. Soc. 1996. V. 143, N 2. P. 422–428.
- 84. Zhuang G., Ross P.N., Kong F.-P., McLarnon F. The Reaction of Clean Li Surfaces with Small Molecules in Ultrahigh Vacuum: II. Water // J. Electrochem. Soc. 1998. V. 145, N 1. P. 159–164.
- Zhuang G., Chen J., Ross P.N. The reaction of lithium with carbon dioxide studied by photoelectron spectroscopy // Surf. Sci. – 1998. – V. 418, N 1. – P. 139–149.

- 86. *Aurbach D., Talyosef Y., Markovsky B. et al.* Design of Electrolyte Solutions for Li and Li-ion Batteries: A Review // Electrochim. Acta. – 2004. – V. 50, N 2–3. – P. 247–254.
- Plichta E., Slane S., Uchiyama M. et al. An Improved Li/Li_xCoO₂ Rechargeable Cell // J. Electrochem Soc. 1989. – V. 136, N 7. – P. 1865–1868.
- Aurbach D., Daroux M.L., Faguy P.W., Yeager E. Identification of Surface Films on Lithium in Propylene Carbonate Solutions // J. Electrochem Soc. – 1987. – V. 134, N 7. – P. 1611–1619.
- Yoshida H., Fukunaga T., Hazama T. et al. Degradation mechanism of alkyl carbonate solvents used in lithium ion cells during initial charging // J. Power Sources. – 1997. – V. 68, Iss. 2. – P. 311–315.
- Aurbach D., Weissman I., Yamin H., Elster E. The Correlation Between Charge/Discharge Rates and Morphology, Surface Chemistry, and Performance of Li Electrodes and the Connection to Cycle Life of Practical Batteries // J. Electrochem. Soc. – 1998. – V. 145, N 5. – P. 1421–1425.
- 91. Peled E. Lithium Batteries. Ch. 3. New York: Acad. Press. 1983. P. 43.
- 92. *Salomon M.* Solubility problems relating to lithium battery electrolytes // Pure Appl. Chem. 1998. V. 70, N 10. P. 1905–1912.
- 93. Plichta E., Salomon M., Slane S. et al. A rechargeable Li/Li_xCoO₂ Cell // J. Power Sources. 1987. V. 21, Iss. 1. P. 25-31.
- 94. *Kanamura K., Okagawa T., Takehara Z.* Electrochemical oxidation of propylene carbonate (containing various salts) on aluminium electrodes // J. Power Sources. 1995. V. 57, Iss. 1–2. P. 119–123.
- Krause L.J., Lamanna W., Summerfield J. et al. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium–ion cells // J. Power Sources. 1997. V. 68, Iss. 2. P. 320–325.
- 96. Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries // Chem. Rev. 2004. V. 104, N 10. P. 4303–4418.
- 97. Xu K. Electrolytes and Interphases in Li-Ion Batteries and Beyond // Chem. Rev. 2014. V. 114, N 23. P. 11503-11618.
- Ohtaki H. Structural studies on solvation and complexation of metal ions in nonaqueous solutions // Pure Appl. Chem. – 1987. – V. 59, N 9. – P. 1143–1150.
- Dudley J.T., Wilkinson D.P., Thomas G. et al. Conductivity of electrolytes for rechargeable lithium batteries // J. Power Sources. – 1991. – V. 35, N 1. – P. 59–82.
- 100. *Aurbach D., Zinigrad E., Cohen Y., Teller H.* A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions // Solid State Ionics. 2002. V. 148, N 3–4. P. 405–416.
- Dey A.N. Film formation on lithium anode in propylene carbonate // Electrochem. Soc. Fall Meeting. N.J. Ext., 1970. – N 62.
- 102. *Peled E.* The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems the solid electrolyte interphase model // J. Electrochem. Soc. 1979. V. 126, N 12. P. 2047–2051.
- Nazri G., Muller R.H. Composition of surface layers on Li electrodes in PC, LiClO₄ of very low water content // J. Electrochem. Soc. – 1985. – V. 132, N 9. – P. 2050–2054.
- 104. Peled E., Golodnitsky D., Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes // J. Electrochem. Soc. 1997. V. 144, N 8. P. L208-L210.
- 105. *Aurbach D., Zinigrad E., Cohen Y., Teller H.* A Short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions // Solid State Ionics. 2002. V. 148, N 3. P. 405–416.
- Aurbach D., Gottlieb H. The electrochemical behavior of selected polar aprotic systems // Electrochim. Acta. 1989. – V. 34. Iss. 2 – P. 141–156.
- 107. Aurbach D., Zaban A., Gofer Y. et al. Recent studies of the lithium-liquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems // J. Power Sources. 1995. V. 54, Iss. 1. P. 76–84.
- 108. Aurbach D., Markovsky B., Shechter A. et al. A comparative study of synthetic graphite and li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures // J. Electrochem. Soc. – 1996. – V. 143, N 12. – P. 3809–3820.
- 109. Schechter A., Aurbach D., Cohen H. X-Ray photoelectron spectroscopy study of surface films formed on li electrodes freshly prepared in alkyl carbonate solutions // Langmuir. 1999. V. 15, N 9. P. 3334–3342.
- Xu W., Wang J., Ding F. et al. Lithium metal anodes for rechargeable batteries // Energy Environ. Sci. 2014. V. 7, N 2. – 513–537.
- 111. *Cheng X.-B., Zhang R., Zhao C.-Z. et al.* A review of solid electrolyte interphases on lithium metal anode // Adv. Sci. 2016. V. 3, Iss. 3. 1500213.
- 112. *Zhang K., Lee G.-H., Park M. et al.* Recent developments of the lithium metal anode for rechargeable non-aqueous batteries // Adv. Energy Mater. 2016. V. 6, Iss. 20. P. 1600811.
- 113. Wang L., Menakath A., Han F. et al. Identifying the components of the solid electrolyte interphase in Li-ion batteries // Nat. Chem. – 2019. – V. 11, N 9. – P. 789–796.
- Kanamura K., Tamura H., Takehara Z. XPS analysis of a lithium surface immersed in propylene carbonate solution containing various salts // J. Electroanal. Chem. – 1992. – V. 333, N 1–2. – P. 127–142.

- Kanamura K., Tamura H., Shiraishi S., Takehara Z. XPS analysis of lithium surfaces following immersion in various solvents containing LiBF₄ // J. Electrochem. Soc. – 1995. – V. 142, N 2. – P. 340–347.
- Lu P., Harris S.J. Lithium transport within the solid electrolyte interphase // Electrochem. Commun. 2011. V. 13, N 10. – P. 1035–1037.
- Shi S.Q., Lu P., Liu Z. et al. Direct calculation of Li-ion transport in the solid electrolyte interphase // J. Am. Chem. Soc. - 2012. - V. 134, Iss. 37. - P. 15476–15487.
- 118. Zhang Q.L., Pan J., Lu P. et al. Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries // Nano Lett. 2016. V. 16, Iss. 3. P. 2011–2016.
- Sazhin S.V., Gorodyskii A.V., Khimchenko M.Y., Kuksenko S.P. New parameters for lithium cyclability in organic electrolytes for secondary batteries // J. Electroanal. Chem. – 1993. – V. 344, N 1–2. – P. 61–72.
- 120. *Кедринский И.А., Герасимова Л.К., Шилкин В.И., Шмыдько И.И.* Коррозия анода в литиевых источниках тока // Электрохимия. – 1995. – Т. 31, № 4. – С. 356–372.
- 121. *Куксенко С.П.* Алюминиевая фольга как анодный материал литий-ионныхакумуляторов: влияние состава електролита на параметры циклирования // Электрохимия. 2013. Т. 49, № 1. С. 73–82. (Поступила в редакцию 09.06.2011).
- 122. Winter M. The solid electrolyte interphase the most important and the least understood solid electrolyte in rechargeable Li batteries // Zeitschriftfür Physikalische Chemie. 2009. V. 223, Iss. 10–11. P. 1395–1406.
- 123. Verma P., Maire P., Novak P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries // Electrochim. Acta. 2010. V. 55, Iss. 22. P. 6332–6341.
- Gauthier M., Carney T.J., Grimaud A. et al. Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights // J. Phys. Chem. Lett. – 2015. – V. 6, Iss. 22. – P. 4653–4672.
- Cresce A., Russell S.M., Baker D.R. et al. In situ and quantitative characterization of solid electrolyte interphases // Nano Lett. – 2014. – V. 14, N 3. – P. 1405–1412.
- 126. Zheng J., Zheng H., Wang R. et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries // Phys. Chem. Chem. Phys. 2014. V. 16, Iss. 26. P. 13229–13238.
- Pirskyy Y., Murafa N., Korduban O.M., Subrt J. Nanostructured catalysts for oxygen electroreduction based on bimetallic monoethanolamine complexes of Co (III) and Ni (II) // J. Appl. Electrochem. – 2014. – V. 44, N 11. – P. 1193–1203.
- 128. *Grande L., Paillard E., Hassoun J. et al.* The lithium/air battery: still an emerging system or a practical reality? // Adv. Mater. 2015. V. 27, N 5. P. 784-800.
- 129. *He P., Zhang T., Jiang J., Zhou H.* Lithium–Air Batteries with Hybrid Electrolytes // J. Phys. Chem. Lett. 2016. V. 7, Iss. 7. P. 1267–1280.
- Bass K., Mitchell P.J., Wilcox G.D., Smith J. Methods for the reduction of shape change and dendritic growth in zinc based secondary cells // J. Power Sources. – 1991. – V. 35, Iss. 3. – P. 333–351.
- 131. Linden D., Reddy T.B. Handbook of batteries. 3rd ed. New York: McGrawHill, 2002. 1453 p.
- Zhuang G.V., Xu K., Yang H. et al. Lithium Ethylene Dicarbonate Identified as the Pimary Product of Chemical and Electrochemical Reduction of EC in 1.2 M / EC:EMC Electrolyte // J. Phys. Chem. B. – 2005. – V. 109, Iss. 37. – P. 17567–17573.
- Zhang X., Kostecki R., Richardson T.J. et al. Electrochemical and Infrared Studies of the Reduction of Organic Carbonates // J. Electrochem. Soc. – 2001. – V. 148, N 12. – P. A1341–A1345.
- Zhuang G.V., Yang H., Blizanac B., Ross P.N. A Study of Electrochemical Reduction of Ethylene and Propylene Carbonate Electrolytes on Graphite Using ATR – FTIR Spectroscopy // Electrochem. Solid State Lett. – 2005. – V. 8, N 9. – P. A441–A445.
- Gresce A.V., Borodin O., Xu K. Correlating Li⁺ Solvation Sheath Structure with Interphasial Chemistry on Graphite // J. Phys. Chem. C. – 2012. – V. 116, Iss. 50. – P. 26111–26117.
- Zheng J., Kim M.S., Tu Z. et al. Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries // Chem. Soc. Rev. – 2020. – V. 49, Iss. 9. – P. 2701–2750.
- 137. Satter R. Effects of Light-Dark Cycles // Science. 1976. V. 192, Iss. 4245. P. 1226.
- 138. Nakajima K. Conversation too Hot to Handle // Mainichi Daily News. 1989. P. 1.
- 139. Pennington S. Moving in on Moli // Vancouver Sun. Business Section. September 28, 1991.
- 140. Rao B.M.L., Francis R.W., Christopher H.A. Lithium-Aluminum Electrode // J. Electrochem. Soc. 1977. V. 124, N 10. P. 1490–1492.
- Lin D., Liu Y., Cui Y. Reviving the Lithium Metal Anode for High-Energy Batteries // Nat. Nanotechnol. 2017. V. 12. – P. 194–206.
- Guo Y., Li H., Zhai T. Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries // Adv. Mater. 2017. – V. 29, Iss. 29. – 1700007.

- 143. *Tikekar M.D., Choudhury S., Tu Z., Archer L.A.* Design principles for electrolytes and interfaces for stable lithiummetal batteries // Nat. Energy. – 2016. – V. 1. – P. 16114.
- 144. *Rehnlund D., Lindgren F., Böhme S. et al.* Lithium trapping in alloy forming electrodes and current collectors for lithium based batteries // Energy Environ. Sci. 2017. V. 10, Iss. 6. P. 1350–1357.
- 145. Wang D., Zhang W., Zheng W. et al. Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface // Energy. Adv. Sci. 2017. V. 4, Iss. 1. P. 1600168.
- 146. Li X., Zheng J., Ren X. et al. Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives // Adv. Energy Mater. – 2018. – V. 8, Iss. 15. – P. 1703022.
- López C.M., Vaughey J.T., Dees D.W. Morphological transitions on lithium metal anodes // J. Electrochem. Soc. 2009. – V. 156, N 9. – P. A726–A729.
- 148. Bieker G., Winter M., Bieker P. Electrochemical in situ investigations of sei and dendrite formation on the lithium metal anode // Phys. Chem. Chem. Phys. 2015. V. 17, Iss. 14. P. 8670–8679.
- Wandt J., Marino C., Gasteiger H.A. et al. Operando electron paramagnetic resonance spectroscopy formation of mossy lithium on lithium anodes during charge-discharge cycling // Energy Environ. Sci. – 2015. – V. 8, Iss. 4. – P. 1358–1367.
- Sacci R.L., Black J.M., Balke N. et al. Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters // Nano Lett. 2015. V. 15, Iss. 3. P. 2011–2018.
- Dornbusch D.A., Hilton R., Lohman S.D., Suppes G.J. Experimental Validation of the Elimination of Dendrite Short-Circuit Failure in Secondary Lithium-Metal Convection Cell Batteries // J. Electrochem. Soc. – 2015. – V. 162, N 3. – P. A262–A268.
- 152. Lu D., Shao Y., Lozano T. et al. Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes // Adv. Energy Mater. 2015. V. 5, Iss. 3. P. 1400993.
- Chang H.J., Ilott A.J., Trease N.M. et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using ⁷Li MRI // J. Am. Chem. Soc. – 2015. – V. 137, N 48. – P. 15209–15216.
- 154. Li W., Zheng H., Chu G. et al. Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation // Faraday Discuss. 2014. V. 176. P. 109–124.
- 155. *Lazzari M., Scrosati B.* A cyclable lithium organic electrolyte cell based on two intercalation electrodes // J. Electrochem. Soc. 1980. V. 127, N 3. P. 773–774.
- 156. Nagaura T., Tozawa K. Lithium ion rechargeable battery // Prog. Batteries and Solar Cells. 1990. V. 9. P. 209.
- 157. Lang J., Qi L., Luo Y., Wu H. High performance lithium metal anode: progress and prospects // Energy Storage Mater. 2017. V. 7. P. 115-129.
- 158. *Gauthier M., Carney T.J., Grimaud A. et al.* Electrode–Electrolyte Interface in Li-ion Batteries: Current Understanding and New Insights // J. Phys. Chem. Lett. 2015. V. 6, Iss. 22. P. 4653–4672.
- Fong R., Sacken U., Dahn J.R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells // J. Electrochem. Soc. – 1990. – V. 137, N 7. – P. 2009–2013.
- 160. *Naji A., Ghanbaja J., Humbert B. et al.* Electroreduction of graphite in LiClO₄-ethylene carbonate electrolyte: characterization of the passivating layer by transmission electron microscopy and fourier-transform infrared spectroscopy // J. Power Sources. 1996. V. 63, Iss. 1. P. 33–39.
- Novak P., Joho F., Imhof R. et al. In situ investigation of the interaction between graphite and electrolyte solutions // J. Power Sources. – 1999. – V. 81–82. – P. 212–216.
- Vetter J., Novak P., Wagner M.R. et al. Ageing mechanisms in lithium-ion batteries // J. Power Sources. 2005. V. 147, Iss. 1–2. – P. 269–281.
- 163. Heine J., Hilbig P., Qi X. et al. Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries // J. Electrochem. Soc. 2015. V. 162, N 6. P. A1094–A1101.
- Zuo X., Zhu J., Müller-Buschbaum P., Cheng Y.-J. Silicon based lithium-ion battery anodes: A chronicle perspective review // Nano Energy. – 2017. – V. 31. – P. 113–143.
- Graetz J., Ahn C.C., Yazami R., Fultz B. Highly reversible lithium storage in nanostructured silicon // Electrochem. Solid-State Lett. – 2003. – V. 6, N 9. – P. A194–A197.
- 166. Xie J., Cao G.S., Zhao X.B. Electrochemical performances of Si-coated MCMB as anode material in lithium-ion cells // Mater. Chem. Phys. 2004. V. 88, N 2–3. P. 295–299.
- Szczech J.R., Jin S. Nanostructured silicon for high capacity lithium battery anodes // Energy Environ. Sci. 2011. – V. 4, Iss. 1. – P. 56–72.
- Liu R., Duay J., Lee S.B. Heterogeneous nanostructured electrode materials for electrochemical energy storage // Chem. Commun. – 2011. – V. 47, Iss. 5. – P. 1384–1404.

- Lee K.T., Cho J. Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries // Nano Today. 2011. – V. 6, N 1. – P. 28–41.
- 170. *Wu H., Cui Y.* Designing nanostructured Si anodes for high energy lithium ion batteries // Nano Today. 2012. V. 7, Iss. 5 P. 414–429.
- 171. Chan C.K., Peng H., Liu G. et al. High-performance lithium battery anodes using silicon nanowires // Nat. Nanotechol. 2008. V. 3, N 1. -P. 31-35.
- 172. *Magasinski A., Dixon P., Hertzberg B. et al.* High-performance lithium-ion anodes using a hierarchical bottom-up approach // Nat. Mater. 2010. V. 9, N 4. P. 353–358.
- 173. Kovalenko I., Zdyrko B., Magasinski A. et al. A major constituent of brown algae for use in high-capacity li-ion batteries // Science. 2011. V. 334, N 6052. P. 75-79.
- 174. *Wu H., Chan G., Choi J.W. et al.* Stable cycling of double-walled silicon nanotube battery anodes through solidelectrolyte interphase control // Nat. Nanotechnol. – 2012. – V. 7, N 5. – P. 310–315.
- 175. Krivchenko V.A., Itkis D.M., Evlashin S.A. et al. Carbon nanowalls decorated with silicon for lithium-ion batteries // Carbon. – 2012. – V. 50, N 3. – P. 1438–1442.
- 176. *Liu N., Lu Z., Zhao J. et al.* A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes // Nat. Nanotechnol. 2014. V. 9, N 3. P. 187–192.
- 177. Куксенко С.П. Кремнийсодержащие аноды с высокой нагрузочной емкостью для литий-ионных аккумуляторов // Электрохимия. 2014. Т. 50, № 6. С. 500–610.
- 178. Feng K., Li M., Liu W. et al. Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications // Small. 2018. V. 14, Iss. 8. P. 1702737.
- 179. Kuksenko S.P., Lutsenko V.G. Li⁺-insertion into fractal Si nanocarbon composite // Theodor Grotthuss Electrochemistry Conference. Vilnius, DABA, 2005. P. 95.
- Kim H., Han B., Choo J., Cho J. Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries // Angew. Chem. Int. Ed. – 2008. – V. 47, Iss. 52. – P. 10151–10154.
- 181. *Zhu J., Gladden C., Liu N. et al.* Nanoporous silicon networks as anodes for lithium ion batteries // Phys. Chem. Chem. Phys. – 2013. – V. 15, Iss. 2. – P. 440–443.
- Lv R., Yang J., Gao P. et al. Electrochemical behavior of nanoporous/nanofibrous Si anode materials prepared by mechanochemical reduction // J. Alloys Compd. – 2010. – V. 490, Iss. 1–2. – P. 84–87.
- 183. Liu N., Wu H., McDowell M.T. et al. A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes// Nano Lett. 2012 V. 12, Iss. 6. P. 3315-3321.
- Kang K., Lee H.-S., Han D.-W. et al. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery // Appl. Phys. Lett. – 2010. – V. 96, Iss. 5. – P. 053110/1–3.
- Kim H., Cho J. Superior Lithium Electroactive Mesoporous Si@Carbon Core Shell Nanowires for Lithium Battery Anode Material // Nano Lett. – 2008. – V. 8, Iss. 11. – P. 3688–3691.
- 186. Park M.-H., Kim M.G., Joo J. et al. Silicon Nanotube Battery Anodes // Nano Lett. 2009. V. 9, Iss. 11. P. 3844–3847.
- Cui L.-F., Yang Y., Hsu C.-M., Cui Y. Carbon Silicon Core Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries // Nano Lett. – 2009. – V. 9, Iss. 9. – P. 3370–3374.
- Evanoff K., Benson G., Schauer M. et al. Ultrastrong Silicon Coated Carbon Nanotube Nonwoven Fabric as a Multifunctional Lithium – Ion Battery Anode // ACS Nano. – 2012. – V. 6, Iss. 11. – P. 9837–9845.
- Xiang H., Zhang K., Ji G. et al. Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability // Carbon. – 2011. – V. 49, Iss. 5. – P. 1787–1796.
- 190. Evanoff K., Magasinski A., Yang J., Yushin G. Nanosilicon-Coated Graphene Granules as Anodes for Li-ion Batteries // Adv. Energy Mater. 2011. V. 1, Iss. 4. P. 495–498.
- Zhou X., Yin Y.-X., Wan L.-J., Guo Y.-G. Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium – Ion Batteries // Adv. Energy Mater. – 2012. – V. 2, Iss. 9. – P. 1086–1090.
- Zhu C., Zhang Y., Ma Z. et al. Yolk-void-shell Si–C nano-particles with tunable void size for high-performance anode of lithium ion batteries // Nanotechnology. – 2021. – V. 32, Iss. 8. – P. 085403.
- Park G.D., Choi J.H., Jung D.S. et al. Three-dimensional porous pitch-derived carbon coated Si nanoparticles-CNT composite microsphere with superior electrochemical performance for lithium ion batteries // J. Alloys Compd. 2020. V. 821. P. 153224.
- 194. *Chen H., Hou X., Chen F. et al.* Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature // Carbon. 2018. V. 130. P. 433–440.
- 195. Wang F., Wang B., Ruan T. et al. Construction of Structure-Tunable Si@Void@C Anode Materials for Lithium-Ion Batteries through Controlling the Growth Kinetics of Resin // ACS Nano. – 2019. – V. 13, Iss. 10. – P. 12219–12229.

- 196. *Ashuri M., He Q., Zhang K. et al.* Synthesis of hollow silicon nanospheres encapsulated with a carbon shell through sol–gel coating of polystyrene nanoparticles // J. Sol-Gel Sci. Technol. 2017. V. 82, Iss. 1. P. 201–213.
- 197. *Liang G., Qin X., Zou J. et al.* Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities // Carbon. 2018. V. 127. P. 424–431.
- Huang H., Rao P., Choi W.M. Carbon-coated silicon/crumpled graphene composite as anode material for lithiumion batteries // Curr. Appl. Phys. – 2019. – V. 19, Iss. 12. – P. 1349–1354.
- 199. Guan P., Li J., Lu T. et al. Facile and Scalable Approach To Fabricate Granadilla-like Porous-Structured Silicon-Based Anode for Lithium Ion Batteries // ACS Appl. Mater. Interfaces. – 2018. – V. 10, Iss. 40. – P. 34283–34290.
- 200. Zhu X., Choi S.H., Tao R. et al. Building high-rate silicon anodes based on hierarchical Si@C@CNT nanocomposite // J. Alloys Compd. 2019. V. 791. P. 1105–1113.
- 201. Wang Z., Mao Z., Lai L. et al. Sub-micron silicon/pyrolyzedcarbon@natural graphite self-assembly composite anode material for lithium-ion batteries // Chem. Eng. J. 2017. V. 313. P. 187–196.
- 202. *Park B.H., Jeong J.H., Lee G.-W. et al.* Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode // J. Power Sources. 2018. V. 394. P. 94–101.
- 203. *Yan Y., Xu Z., Liu C. et al.* Rational Design of the Robust Janus Shell on Silicon Anodes for High-Performance Lithium-Ion Batteries // ACS Appl. Mater. Interfaces. 2019. V. 11, Iss 19. P. 17375–17383.
- Luo J., Zhao X., Wu J. et al. Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes // J. Phys. Chem. Lett. – 2012. – V. 3, Iss. 13. – P. 1824–1829.
- 205. *He Y., Han F., Wang F. et al.* Optimal microstructural design of pitch-derived soft carbon shell in yolk-shell silicon/carbon composite for superior lithium storage // Electrochim. Acta. 2021. V. 373. P. 137924.
- 206. Xie J., Tong L., Su L. et al. Core-shell yolk-shell Si@C@Void@Cnanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance // J. Power Sources. 2017. V. 342. P. 529–536.
- 207. *Guo S., Hu X., Hou Y., Wen Z.* Tunable Synthesis of Yolk–Shell Porous Silicon@Carbon for Optimizing Si/C-Based Anode of Lithium-Ion Batteries // ACS Appl. Mater. Interfaces. 2017. V. 9, Iss. 48. P. 42084–42092.
- Zhao H., Xu X., Yao Y. et al. Assembly of Si@Void@Graphene Anodes for Lithium-Ion Batteries: In Situ Enveloping of Nickel-Coated Silicon Particles with Graphene // ChemElectroChem. – 2019. – V. 6, Iss. 17. – P. 4617–4625.
- 209. *Ding X., Liu X, Huang Y. et al.* Enhanced electrochemical performance promoted by monolayer graphene and void space in silicon composite anode materials // Nano Energy. 2016. V. 27. P. 647–657.
- 210. Takamura T., Ohara S., Uehara M. et al. A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life // J. Power Sources. 2004. V. 129. P. 96-100.
- Park O.K., Cho Y., Lee S. et al. Who will drive electric vehicles, olivine or spinel? // Energy Environ. Sci. 2011. V. 4, Iss. 5. – P. 1621–1633.
- 212. Shen T., Xie D., Tang W. et al. Biomass-derived carbon/silicon three-dimensional hierarchical nanostructure as anode material for lithium ion batteries // Mat. Res. Bull. 2017. V. 96, Part 4. 340–346.
- 213. Wang M.-S., Song W.-L., Wang J., Fan L.-Z. Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries // Carbon. 2015. V. 82. P. 337–345.
- 214. *Wu J., Qin X., Zhang H. et al.* Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode // Carbon. 2015. V. 84. P. 434–443.
- Su L., Xie J., Xu Y. et al. Preparation and lithium storage performance of yolk-shell Si@void@C nanocomposites // Phys. Chem. Chem. Phys. – 2015. – V. 17, Iss. 27. – P. 17562–17565.
- Favors Z., Wang W., Bay H.H. et al. Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Liion Batteries // Sci. Rep. – 2014. – V. 4. – P. 5623.
- Smith A.J., Burns J.C., Zhao X. et al. A high precision coulometry study of the SEI growth in Li/graphite cells // J. Electrochem. Soc. – 2011. – V. 158, N 5. – P. A447–A452.
- Smith A.J., Burns J.C., Dahn J.R. A High Precision Study of the Coulombic Efficiency of Li-Ion Batteries // Electrochem. Solid-State Lett. – 2010. – V. 13, N 12. – P. A177–A179.
- Куксенко С.П. Параметры циклирования кремниевых анодных материаловлитий-ионных аккумуляторов // Журн. прикл. химии. – 2010. – Т. 83, № 4. – С. 589–595.
- 220. *Куксенко С.П.* Кремниевые электроды литий-ионных аккумуляторов: пути улучшения параметров циклирования // Фундаментальные проблемы преобразования энергии в литиевых электрохимических системах. Новочеркасск: ЮРГТУ (НПИ), 2010. С. 147–151.
- 221. Куксенко С.П., Коваленко И.О., Тарасенко Ю.А., Картель Н.Т. Формирование стабильной аморфной фазы в покрытом углеродом кремнии при глубоком электрохимическом литировании // Химия, физика и технология поверхности. – 2010. – Т. 1, № 1. – С. 57–71.
- Kwon Y., Ryu G.H., Oh S.M. Performance of electrochemically generated Li₂₁Si₅ phase for lithium-ion batteries // Electrochim. Acta. – 2010. – V. 55, Iss. 27. – P. 8051–8055.

- Holzapfel M., Buqa H., Krumeich F. et al. Chemical Vapor Deposited Silicon/Graphite Compound Material as Negative Electrode for Lithium – Ion Batterries // Electrochem. Solid-State Lett. – 2005. – V. 8, N 10. – P. A516–A520.
- 224. Куксенко С., Тарасенко Ю. Алюмінісва фольга як багатофункціональний матеріал для високоенергоємних літійіонних акумуляторів із низькою собівартістю виготовлення // VIII Український з'їзд з електрохімії (Львів, 4–7 червня 2018 р.): Збірник наукових праць / А.О. Омельчук, Р.С. Гладишевський, О.В. Решетняк (ред.). – Львів: Дослідно-видавничий центр Наукового товариства ім. Т. Шевченка. – 2018. – Ч. 2. – С. 297–299.
- 225. *Li H., Yamaguchi T., Matsumoto S. et al.* Circumventing huge volume strain in alloy anodes of lithium batteries // Nat. Commun. 2020. V. 11. P. 1584/1–8.
- 226. *Qin B., Jeong S., Zhang H. et al.* Enabling Reversible (De-)Lithiation of Aluminum via the Use of Bis(fluorosulfonyl)imide-based Electrolytes // ChemSusChem. 2019. –V. 12, Iss. 1. P. 208–212.
- 227. Tahmasebi M.H., Kramer D., Mönig R., Boles S.T. Insights into Phase Transformations and Degradation Mechanisms in Aluminum Anodes for Lithium-Ion Batteries // J. Electrochem. Soc. – 2019. – V. 166, N 3. – P. A5001–A5007.
- 228. *Tasaki K., Harris S.J.* Computational study on the solubility of lithium salts formed on lithium ion battery negative electrode in organic solvents // J. Phys. Chem. C. 2010. V. 114, N 17. P. 8076–8083.
- 229. *Yan J., Xia B.-J., Su Y.-C. et al.* Phenomenologically modeling the formation and evolution of the solid electrolyte interface on the graphite electrode for lithium-ion batteries // Electrochim. Acta. 2008. V. 53, N 24. P. 7069–7078.
- Grugeon S., Jankowski P., Cailleu D. et al. Towards a better understanding of vinylene carbonate derived SEIlayers by synthesis of reduction compounds // J. Power Sources. – 2019. – V. 427. – P. 77–84.
- 231. Jung R., Metzger M., Haering D. et al. Consumption of Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li Ion Batteries // J. Electrochem. Soc. 2016. V. 163, N 8. P. A1705–A1716.
- 232. Yohannes Y.B., Lin S.D., Wu N.-L. In Situ DRIFTS Analysis of Solid Electrolyte Interphase of Si-Based Anode with and without Fluoroethylene Carbonate Additive // J. Electrochem. Soc. 2017. V. 164, N 14. P. A3641–A3648.
- 233. *Ein-Eli Y., Thomas S.R., Koch V. et al.* Ethylmethylcarbonate, a Promising Solvent for Li-Ion Rechargeable Batteries // J. Electrochem. Soc. 1996. V. 143, N 12. P. L273–L276.
- 234. Su C.-C., He M., Shi J. et al. Solvation Rule for Solid-Electrolyte Interphase Enabler in Lithium-Metal Batteries // Angew. Chem. Int. Ed. 2020. V. 59, Iss. 41. P. 18229–18233.
- Shi Q., Heng S., Qu Q. et al. Constructing an elastic solid electrolyte interphase on graphite: a novel strategy suppressing lithium inventory loss in lithium-ion batteries // J. Mater. Chem. A. 2017. V. 5, N 22. P. 10885–10894.
- 236. *Choi N.-S., Yew K.H., Lee K.Y. et al.* Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode // J. Power Sources. 2006. V. 161, N 2. P. 1254–1259.
- 237. Куксенко С.П., Коваленко И.О. Получение композита кремний графит для гибридного электрода литийионных аккумуляторов // Журнал прикладной химии. – 2010. – Т. 83, № 10. – С. 1672–1676.
- 238. Куксенко С.П., Коваленко И.О. Нанопорошок кремния как активный материал гибридных электродов литий-ионных аккумуляторов // Журнал прикладной химии. 2011. Т. 84, № 7. С. 1107–1115.
- 239. Куксенко С.П., Куць В.С., Тарасенко Ю.А., Картель Н.Т. Электрохимические исследования и квантовохимические расчеты системы Si_nLi_m // Хімія, фізика та технологія поверхні. 2011. Т. 2, № 3. С. 221–228.
- 240. Куксенко С.П., Коваленко И.О., Тарасенко Ю.А., Картель Н.Т. Нанокомпозит кремний–углерод для гибридных электродов литий-ионных аккумуляторов // Вопросы химии и химической технологии. 2011. № 4(1). С. 299–303.
- Nakai H., Kubota T., Kita A., Kawashima A. Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes // J. Electrochem. Soc. – 2011. – V. 158, N 7. – P. A798–A801.
- Etacheri V., Haik O., Goffer Y. et al. Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery anodes // Langmuir. – 2012. – V. 28, N 1. – P. 965–976.
- 243. *Lin Y.-M., Klavetter K.C., Abel P.R. et al.* High Performance Silicon Nanoparticle Anode in Fluoroethylene Carbonate-Based Electrolyte for Li-Ion Batteries // Chem. Commun. 2012. V. 48, N 58. P. 7268–7270.
- Elazari R., Salitra G., Gershinsky G. et al. Li Ion Cells Comprising Lithiated Columnar Silicon Film Anodes, TiS₂ Cathodes and Fluoroethylene Carbonate (FEC) as a Critically Important Component // J. Electrochem. Soc. – 2012. – V. 159, N 9. – P. A1440–A1445.
- 245. Ma L., Glazier S.L., Petibon R. et al. A Guide to Ethylene Carbonate-Free Electrolyte Making for Li-Ion Cells // J. Electrochem. Soc. – 2017. – V. 164, N 1. – P. A5008–A5018.
- Zhang J., Shen C., Liu P., Qiao Y. Understanding the effect of electrolyte on the cycle and structure stability of high areal capacity Si-Al film electrode // Ionics. 2019. V. 25, N 2. P. 483–492.

- 247. Xia J., Aiken C.P., Ma L. et al. Combinations of Ethylene Sulfite (ES) and Vinylene Carbonate (VC) as Electrolyte Additives in Li(Ni_{1/3}Mn_{1/3}Co_{1/3})O₂/Graphite Pouch Cells // J. Electrochem. Soc. – 2014. – V. 161, N 6. – P. A1149–A1157.
- 248. Jung H.M., Park S.-H., Jeon J. et al. Fluoropropane sultone as an SEI-forming additive that outperforms vinylene carbonate // J. Mater. Chem. A. 2013. V. 1, Iss. 38. P. 11975–11981.
- Liu S., Ji X., Piao N. et al. Inorganic-rich Solid Electrolyte Interphase for Advanced Lithium Metal Batteries in Carbonate Electrolytes // Angew. Chem. Int. Ed. – 2021. – V. 60, Iss. 7. – P. 3661–3671.
- 250. Wang H., Tan H., Luo X. et al. Progress in aluminum-based anode materials for lithium ion batteries // J. Mater. Chem. A. 2020. V. 8, Iss. 48. P. 25649–25662.
- 251. Soto F.A., Martinez de la Hoz J.M., Seminario J.M., Balbuena P.B. Modeling solid-electrolyte interfacial phenomena in silicon anodes // Curr. Opin. Chem. Eng. 2016. V. 13. P. 179–185.
- 252. *Philippe B., Dedryvère R., Gorgoi M. et al.* Role of the LiPF₆ Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries A Photoelectron Spectroscopy Study // Chem. Mater. 2013. V. 25, N 3. P. 394–404.
- 253. *Куксенко С.П., Тарасенко Ю.А., Коваленко И.О., Картель Н.Т.* Углеродное покрытие микро- и нанокремния: прогресс кремниевых анодных материалов для литий-ионных аккумуляторов // Межвед. сб. «Химия, физика и технология поверхности». Киев: Наукова думка. 2009. Вып. 15. С. 144–153.
- Son B.D., Lee J.K., Yoon W.Y. Effect of Tungsten Nanolayer Coating on Si Electrode in Lithium-ion Battery // Nanoscale Res. Lett. – 2018. – V. 13, N 1. – P. 58–64.
- 255. *Zhang Y., Liu Z., Zhu C. et al.* Boosting anode performance of mesoporous Si by embedding copper nano-particles // J. Alloys Compd. – 2021. – V. 850. – P. 156863/1–8.
- 256. Arie A.A., Song J.O., Lee J.K. Structural and electrochemical properties of fullerene coated silicon film as anode materials for lithium secondary batteries // Mater. Chem. Phys. 2009. V. 113, N 1. P. 249–254.
- 257. Kuksenko S.P. Nonporous nanostructured 3D-silicon for anodes of lithium-ion batteries // Int. Technol. Meet. "Nanotechnologies and Nanomaterials for Business and Technology Areas". Booklet of nanotechnologies of the participants of the International Technology Meeting, November 22, 2013. – Kyiv: Institute of Physics NAS of Ukraine, 2013. – P. 11.
- 258. *Куксенко С.П.* Непористий 3D-кремній високоефективний електродний наноматеріал для літій-іонних акумуляторів нового покоління // Nanotechnology and Nanomaterials. Technology Developments Book. Lviv: Eurosvit., 2014. C. 218–219.
- 259. *Куксенко С.П.* Кремнийсодержащие аноды с низкой накопленной необратимой емкостью для литийионных аккумуляторов // Журнал прикладной химии. – 2013. – Т. 86, № 5. – С. 756–765.
- 260. *Куксенко С.П.* Высокоразупорядоченный кремнийсодержащий углерод из полиметилфенилсилоксана как анодный материал для литий-ионных аккумуляторов: аномальное поведение в тонком слое // Журнал прикладной химии. 2016. Т. 89, № 8. С. 987–994.
- 261. Куксенко С.П., Тарасенко Ю.А., Картель Н.Т. Непористый 3D-кремний высокоэффективный электродный наноматериа для практического применения в литий-ионных аккумуляторах // Наноразмерные системы и наноматериалы: исследования в Украине / Гл. ред. А.Г. Наумовец. Киев: Академпериодика, 2014. С. 638–644.
- Куксенко С.П. Необратимые потери емкости при внедрении/экстракции лития в графит-кремниевых электродах // Межвед. сб. «Химия, физика и технология поверхности». – Киев: Наукова думка. – 2008. – Вып. 14. – С. 123–128.
- 263. *Wetjen M., Pritzl D., Jung R. et al.* Differentiating the Degradation Phenomena in Silicon-Graphite Electrodes for Lithium-Ion Batteries // J. Electrochem. Soc. 2017. V. 164, N 12. P. A2840–A2852.
- 264. *Patent US 10483529 B2. HO1M 4/36, 4/38, 4/62, 10/0525, 10/04.* Composite powder for use in an anode of a lithium ion battery, method of preparing such a composite powder and method for analysing such a composite powder / Put S., Van Genechten D., Driesen K., Hu J., Strauven Y., Muto A., Ishii N., Takeuchi M. Опубл. 2019.
- 265. Patent US 10847782 B2. HO1M 4/134, C01B 32/00, C01B 33/03, H01M 4/362. Powder, electrode and battery comprising such a powder / Put S., Van Genechten D., Gilleir J., Marx N. Опубл. 2020.
- Kaspar J., Graczyk-Zajac M., Lauterbach S. et al. Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties // J. Power Sources. – 2014. – V. 269. – P.164–172.
- 267. *Kuksenko S.P.* Ceramic Si ⊃ SiOC&C nanostructures // Ukrainian-German Symposium on Physics and Chemistry of Nanostructures and on Nanobiotechnology. Kyiv, Ukraine. 21–25 September 2015. Book of Abstr. P. 96.
- Zhao K., Tritsaris G.A., Pharr M. et al. Reactive flow in silicon electrodes assisted by the insertion of lithium // Nano Lett. - 2012. - Vol. 12, N 8. - P. 4397-4403.

REFERENCES

- 1. Choi J.W., Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. *Nat. Rev. Mater.* 2016. 1(4): 16013.
- 2. Manthiram A. An outlook on lithium ion battery technology. ACS Cent. Sci. 2017. 3(10): 1063.
- 3. Opitz A., Badami P., Shen L., Vignarooban K., Kannan A.M. Can Li-Ion batteries be the panacea for automotive applications? *Renewable Sustainable Energy Rev.* 2017. **68**(1): 685.
- 4. Schmuch R., Wagner R., Hörpel G., Placke T., Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. *Nat. Energy*. 2018. **3**(4): 267.
- 5. Cano Z.P., Banham D., Ye S., Hintennach A., Lu J., Fowler M., Chen Z. Batteries and fuel cells for emerging electric vehicle markets. *Nat. Energy*. 2018. **3**(4): 279.
- 6. Zeng X., Li M., Abd El-Hady D., Alshitari W., Al-Bogami A.S., Lu J., Amine K. Commercialization of Lithium Battery Technologies for Electric Vehicles. *Adv. Energy Mater.* 2019. **9**(27): 1.
- Marinaro M., Bresser D., Beyer E., Faguy P., Hosoi K., Li H., Sakovica J., Amine K., Wohlfahrt-Mehrens M., Passerini S. Bringing forward the development of battery cells for automotive applications: Perspective of R&D activities in China, Japan, the EU and the USA. J. Power Sources. 2020. 459: 228073.
- 8. Maletin Yu., Stryzhakova N., Zelinskyi S., Chernukhin S., Tretyakov D., Mosqueda H., Davydenko N., Drobnyi D. New Approach to Ultracapacitor Technology: What it Can Offer to Electrified Vehicles. *Journal of Power and Energy Engineering*. 2015. **9**(6): 585.
- 9. Maletin Yu., Stryzhakova N., Zelinskyi S., Chernukhin S., Tretyakov D., Tychina S., Drobny D. Electrochemical Double Layer Capacitors and Hybrid Devices for Green Energy. *Green*. 2014. **4**: 9.
- Patent US 2014/0085773. H01G11/06. Chernukhin S., Tretyakov D., Maletin Yu. Hybrid electrochemical energy storage device. 2014.
- 11. Patent US 7,006,346 B2. HO1G 9/00, 9/145. Volfkovich Yu.M., Rychagov A.Y., Urisson N.A., Serdyuk T.M. Positive Electrode of an Electric Double Layer Capacitor. 2006.
- Weppner W., Huggins R. Determination of the kinetic parameters of mixed-conducting electrodes and applications to the system Li₃Sb. J. Electrochem. Soc. 1977. 124(10): 1569.
- 13. Goodenough J.B., Kim Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010. 22(3): 587.
- 14. Hayashi M., Arai H., Ohtsuka H., Sahurai Y. Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as calcium hosts. *J. Power Sources*. 2003. **119–121**: 617.
- Rong Z., Malik R., Canepa P., Gautam G.S., Liu M., Jain A., Persson K., Ceder G. Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures. *Chem. Mater.* 2015. 27: 6016.
- 16. Placke T., Kloepsch R., Dühnen S., Winter M. Lithium Ion, Lithium Metal, and Alternative Rechargeable Battery Technologies: The Odyssey for High Energy Density. *J. Solid State Electrochem.* 2017. **21**: 1939.
- 17. Canepa P., Gautam G.S., Hannah D.C., Malik R., Liu M., Gallagher K.G., Persson K., Ceder G. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. *Chem. Rev.* 2017. **117**(5): 4287.
- 18. Anji R.M., Fichtner M. Batteries based on fluoride shuttle. J. Mater. Chem. 2011. 21(43): 17059.
- 19. Wang F., Wu X., Li C., Zhu Y., Fu L., Wu Y., Liu X. Nanostructured positive electrode materials for post-lithium ion batteries. *Energy Environ Sci.* 2016. **9**(12): 3570.
- 20. Sarma D.D., Shukla A.K. Building Better Batteries: A Travel Back in Time. ACS Energy Lett. 2018. 3(11): 2841.
- 21. Goodenough J.B. Battery components, active materials for. In: *Batteries for Sustainibility: Selected Entries from the Encyclopedia of Sustainibility Science and Technology.* (Springer Sci.: New York, NY, USA, 2013). P. 51.
- 22. Holmes C. The Lithium/Iodine-Polyvinylpyridine Pacemaker Battery 35 years of Successful Clinical Use. *ECS Trans.* 2007. **6**(5): 1.
- 23. Goodenough J.B. Energy Storage Materials: A Perspective. *Energy Storage Mater.* 2015. 1: 158.
- 24. Palacin M.R., de Guibert A. Why Do Batteries Fail? Science. 2016. 351(6273): 1253292.
- 25. Evarts E.C. To the Limits of Lithium. *Nature*. 2015. **526**(7575): S93.
- 26. Julien C., Mauger A., Vijh A., Zaghib K. *Lithium Batteries: Science and Technology*. (Springer Int. Publ. Switzerland, 2016). P. 34.
- Kuksenko S.P., Tarasenko Yu.O., Kartel M.T. a-Si@SiOC&C (2D ⊃ micro-3D) Novel Nanocomposite for Lithium-Ion Batteries Next Generation. In: *Reporting scientific session on the projects of the target program of* scientific researches of the NAS of Ukraine "New functional substances and materials of chemical production". (Kyiv, IPhCh NAS Ukraine, 14 December 2017). Abstracts. P. 31. [in Ukrainian].
- Kuksenko S.P., Kaleniuk H.O., Tarasenko Yu.O., Kartel M.T. Stable silicon electrodes with polyvinilidenfluoridebinder for lithium-ion batteries. *Him. Fiz. Tehnol. Poverhn.* 2020. 11(1): 58 [in Ukrainian].
- 29. Kang B., Ceder G. Battery materials for ultrafast charging and discharging. *Nature*. 2009. 458(7235): 190.
- 30. Scrosati B., Garche J. Lithium batteries: Status, prospects and future. J. Power Sources. 2010. 195(9): 2419.
- 31. Janek J., Zeier W.G. A Solid Future for Battery Development. Nat. Energy. 2016. 1: 16141.

- 32. Qian J., Adams B.D., Zheng J., Xu W., Henderson W.A., Wang J., Bowden M.E., Xu S., Hu J., Zhang J.-G. Anode–Free Rechargeable Lithium Metal Batteries. *Adv. Funct. Mater.* 2016. **26**(39): 7094.
- Tian Y., An Y., Wei C., Jiang H., Xiong S., Feng J., Zhou J. Recently advances and perspectives of anode–free rechargeable batteries. *Nano Energy*. 2020. 78: 105344.
- 34. Nanda S., Gupta A., Manthiram A. Anode–Free Full Cells: A Pathway to High–Energy Density Lithium–Metal Batteries. *Adv. Energy Mater.* 2020. **11**(2): 200804.
- 35. https://www.marketwatch.com/press-release/lithium-ion-battery-market-is-set-to-grow-us-69-billion-by-2022-2019-01-07
- Dunn B., Kamath H., Tarascon J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science. 2011. 334(6058): 928.
- 37. Kim T.-H., Park J.-S., Chang S.K., Choi S., Ryu J.H., Song H.-K. The Current Move of Lithium Ion Batteries Towards the Next Phase. *Adv. Energy Mater*. 2012. **2**(7): 860.
- 38. https://www.navigantresearch.com/research/navigant-research-leaderboard-lithium-ion-batteries-for-grid-storage
- 39. Kuksenko S., Tarasenko Yu. Aluminum Foil as Negative Electrode for High Energy Lithium-Ion Batteries // Scientific Reporting Session of the Research Program of the National Academy of Sciences of Ukraine "New Functional Substances and Chemical Production Materials". (Kyiv, 13 December 2018). Abstracts. P. 31. [in Ukrainian].
- Kuksenko S.P., Kaleniuk H.O., Tarasenko Yu.O., Kartel M.T. Influence of electrolyte additive of trimethylsilylisocyanate on properties of electrode with nanosilicon for lithium-ion batteries. *Him. Fiz. Tehnol. Poverhn.* 2021. 12(1): 67 [in Ukrainian].
- 41. Yuca N., Taskin O.S., Arici E. An overview on efforts to enhance the Si electrode stability for lithium ion batteries. *Energy Storage*. 2020. **2**(1): e94.
- 42. Sturm J., Rheinfeld A., Zilberman I., Spingler F.B., Kosch S., Frie F., Jossen A. Modeling and simulation of inhomogeneities in a 18650 nickel-rich, silicon-graphite lithium-ion cell during fast charging. *J. Power Sources*. 2019. **412**: 204.
- 43. https://datasheetspdf.com/pdf-file/974431/Panasonic/NCR18650BF/1
- 44. Willenberg L.K., Dechent P., Fuchs G., Sauer D.U., Figgemeier E. High-Precision Monitoring of Volume Change of Commercial Lithium-Ion Batteries by Using Strain Gauges. *Sustainability*. 2020. **12**(2): 28.
- Anseán D., Baure G., González M., Cameán I., Dubarry M. Mechanistic investigation of silicon-graphite / LiNi_{0.8}Mn_{0.1}Co_{0.1}O₂ commercial cells for non-intrusive diagnosis and prognosis. *J. Power Sources*. 2020. 459: 227882.
- Eisele L., Skrotzki J., Schneider M., Bolli C., Erk C., Ludwig T., Schaub A., Novák P. Coating of Li_{1+x}[Ni_{0.85}Co_{0.10}Mn_{0.05}]_{1-x}O₂ Cathode Active Material with Gaseous BF₃. J. Electrochem. Soc. 2020. 167(12): 120505.
- 47. Mohanty D., Mazumder B., Devaraj A., Sefat A.S., Huq A., David L.A., Payzant E.A., Li J., Wood III D.L., Daniel C. Resolving the degradation pathways in high-voltage oxides for high-energy-density lithium-ion batteries; Alternation in chemistry, composition and crystal structures. *Nano Energy*. 2017. **36**: 76.
- 48. Kuksenko S.P., Danilin V.V., Skakalskii A.I., Lugovoi V.P., Tkachenko A.V. Features of the discharging characteristics of button-type lithium cells with copper-oxide cathode. *J. Appl. Chem. USSR.* 1992. **65**(8):1448.
- 49. Kojima T., Ishizu T., Horiba T., Yoshikawa M. Development of lithium-ion battery for fuel cell hybrid electric vehicle application. *J. Power Sources*. 2009. **189**(1): 859.
- 50. Cabana J., Monconduit L., Larcher D., Palacin M.R. Beyond Intercalation–Based Li–Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. *Adv. Mater.* 2010. **22**(35): E170.
- Park C.-M., Kim J.-H., Kim H., Sohn H.-J. Li-alloy anode materials for secondary batteries. *Chem. Soc. Rev.* 2010. 39(8): 3115.
- 52. Nitta N., Yushin G. High–Capacity Anode Materials for Lithium–Ion Batteries: Choice of Elements and Structures for Active Particles. *Part. Part. Syst. Charact.* 2014. **31**(3): 317.
- 53. Nitta N., Wu F., Lee J.T., Yushin G. Li-ion battery materials: present and future. *Mater. Today.* 2015. 18(5): 252.
- 54. Xu W., Wang J., Ding F., Chen X., Nasybulin E., Zhang Y., Zhang J.-G. Lithium metal anodes to rechargeable batteries. *Energy Environ. Sci.* 2014. 7(2): 513.
- 55. Kasavajjula U., Wang C., Appleby A.J. Nano- and bulk-silicon based insertion anodes for lithium-ion secondary cells. *J. Power Sources*. 2007. **163**(2): 1003.
- 56. Obrovac M.N., Chevrier V.L. Alloy Negative Electrodes for Li-Ion Batteries. Chem. Rev. 2014. 114(23): 11444.
- 57. Zuo X., Zhu J., Müller-Buschbaum P., Cheng Y.-J. Silicon based lithium ion battery anodes: A chronicle perspective review. *Nano Energy*. 2017. **31**: 113.
- 58. Obrovac M.N., Christensen L. Structural changes in silicon anodes during lithium insertion/extraction. *Electrochem. Solid-State Lett.* 2004. 7(5): A93.
- 59. Obrovac M.N., Krause L.J. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 2007. 154(2): A103.

- 60. Zhang W.-J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources. 2011. **196**(1): 13.
- 61. Tirado J.L. Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects. *Mater. Sci. Eng. R.* 2003. **40**(3): 103.
- 62. Idota Y., Kubota T., Matsufuji A., Maekawa Y., Miyasaka T. Tin-based amorphous oxide: a high-capacity lithiumion-storage material. *Science*. 1997. **276**(5317): 1395.
- 63. Inoue H. High capacity negative electrode materials next to carbon: Nexelion. *Book of Abstracts, IMLB-2006.* Biarritz, France. June 18-23, 2006. – Abstr. 228.
- 64. Hamon Y., Brousse T., Jousse F., Topart P., Buvat P., Schleich D.M. Aluminum negative electrode in lithium ion batteries. *J. Power Sources*. 2001. **97–98**: 185.
- 65. Wang C.Y., Meng Y.S., Ceder G., Li Y. Electrochemical Properties of Nanostructured Al_{1-x}Cu_x Alloys as Anode Materials for Rechargeable Lithium-Ion Batteries. *J. Electrochem. Soc.* 2008. **155**(9): A615.
- Ui K., Minami T., Ishikawa K., Idemoto Y., Koura N. Application to Negative Electrode for Lithium Secondary Batteries of Electroplated Aluminum Electrode. *Electrochemistry*. 2005. 73(4): 279.
- 67. Chen Z.X., Qian J.F., X. Ai X.P., Cao Y.L, Yang H.X. Electrochemical performances of Al-based composites as anode materials for Li-ion batteries. *Electrochim. Acta*. 2009. **54**(16): 4118.
- Lei X., Xiang J., Ma X., Wang C., Sun J. Surface modification of aluminum with tin oxide coating. J. Power Sources. 2007. 166(2): 509.
- 69. Lei X., Wang C., Yi Z., Liang Y., Sun J. Effect of particle size on the electrochemical properties of aluminum powders as anode materials for lithium ion batteries. *J. Alloy Compd.* 2007. **429**(1–2): 311.
- 70. Lindsay M.J., Wang G.X., Liu H.X. Al-based anode materials for Li-ion batteries. J. Power Sources. 2003. 119–121: 84.
- 71. Fleischauer M.D., Obrovac M.N., Dahn J.R. Al-Si Thin-Film Negative Electrodes for Li-Ion Batteries. *J. Electrochem. Soc.* 2008. **155**(11): A851.
- 72. Fleischauer M.D., Obrovac M.N., Dahn J.R. Simple Model for the Capacity of Amorphous Silicon-Aluminum-Transition Metal Negative Electrode Materials. *J. Electrochem. Soc.* 2006. **153**(6): A1201.
- 73. Jeong G.J., Kim Y.U., Sohn H.J., Kang T. Particulate-reinforced Al-based composite material for anode in lithium secondary batteries. *J. Power Sources*. 2001. **101**(2): 201.
- 74. Trifonova A.V., Momchilov A.A., Puresheva B.L., Abrahams I. Electrochemical lithium intercalation in lead-tinaluminium solder. *Solid State Ionics*. 2001. **143**(3–4): 319.
- 75. Patent US 4,002,492. Rao B.M.L. Rechargeable lithium-aluminium anode. 1977.
- 76. McAlister A.J. The Al–Li (Aluminum–Lithium) system. Bull. Alloy Phase Diagrams. 1982. 3: 177.
- 77. ASM Handbook. Alloy Phase Diagrams. Baker H. ASM International, Materials Park, Ohio. 1992. P. 2.
- 78. Thackeray M.M., Vaugheya J.T., Johnson C.S., Kropf A.J., Benedek R., Fransson L.M.L., Edström K. Structural considerations of intermetallic electrodes for lithium batteries. *J. Power Sources*. 2003. **113**(1): 124.
- 79. Lee J.-I., Song G., Cho S., Han D.-Y., Park S. Lithium metal interface modification for high energy batteries: approaches and characterization. *Batteries Supercaps*. 2020. **3**(9): 828.
- Eshetu G.G., Figgemeir E. Confronting the Chellenges of Next Generation Silicon Anode Based Lithium Ion Batteries: Role Designer Electrolyte Additives and Polymeric Binders. *ChemSusChem.* 2019. 12(12): 2515.
- 81. Jeppson D.W., Ballif J.L., Yuan W.W., Chou B.E. *Lithium Literature Review: Lithium's Properties and Interactions*. Hanford Engineering Development Laboratory. (Richland, WA, USA. 1978).
- 82. Hong S.-T., Kim J.-S., Lim S.-J., Yoon W.Y. Surface Characterization of Emulsified Lithium Powder Electrode. *Electrochim. Acta.* 2004. **50**(2–3): 535.
- 83. Wang K., Ross P.N., Kong F., McLarnon F. The Reaction of Clean Li Surfaces with Small Molecules in Ultrahigh Vacuum: I. Dioxygen. *J. Electrochem. Soc.* 1996. **143**(2): 422.
- 84. Zhuang G., Ross P.N., Kong F.-P., McLarnon F. The Reaction of Clean Li Surfaces with Small Molecules in Ultrahigh Vacuum: II. Water. J. Electrochem. Soc. 1998. 145(1): 159.
- Zhuang G., Chen J., Ross P.N. The reaction of lithium with carbon dioxide studied by photoelectron spectroscopy. Surf. Sci. 1998. 418(1): 139.
- 86. Aurbach D., Talyosef Y., Markovsky B., Markevich E., Zinigrad E., Asraf L., Gnanaraj J., Kim H.-J. Design of Electrolyte Solutions for Li and Li-ion Batteries: A Review. *Electrochim. Acta*. 2004. **50**(2–3): 247.
- Plichta E., Slane S., Uchiyama M., Salomon M., Chua D., Ebner W.B., Lin H.W. An Improved Li/Li_xCoO₂ Rechargeable Cell. J. Electrochem. Soc. 1989. 136(7): 1865.
- 88. Aurbach D., Daroux M.L., Faguy P.W, Yeager E. Identification of Surface Films on Lithium in Propylene Carbonate Solutions. J. Electrochem. Soc. 1987. **134**(7): 1611.
- 89. Yoshida H., Fukunaga T., Hazama T., Terasaki M., Mizutani M., Yamachi M. Degradation mechanism of alkyl carbonate solvents used in lithium ion cells during initial charging. *J. Power Sources*. 1997. **68**(2): 311.

- Aurbach D., Weissman I., Yamin H., Elster E. The Correlation Between Charge/Discharge Rates and Morphology, Surface Chemistry, and Performance of Li Electrodes and the Connection to Cycle Life of Practical Batteries. *J. Electrochem. Soc.* 1998. 145(5): 1421.
- 91. Peled E. Lithium Batteries. Ch. 3. (New York: Acad. Press, 1983).
- 92. Salomon M. Solubility problems relating to lithium battery electrolytes. *Pure Appl. Chem.* 1998. **70**(10): 1905.
- Plichta E., Salomon M., Slane S., Uchiyama M., Chua D., Ebner W.B., Lin H.W. A rechargeable Li/Li_xCoO₂ Cell. J. Power Sources. 1987. 21(1): 25.
- 94. Kanamura K., Okagawa T., Takehara Z. Electrochemical oxidation of propylene carbonate (containing various salts) on aluminium electrodes. *J. Power Sources*. 1995. **57**(1–2): 119.
- Krause L.J., Lamanna W., Summerfield J., Engle M., Korba G., Loch R., Atanasoski R. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium – ion cells. J. Power Sources. 1997. 68(2): 320.
- 96. Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. *Chem. Rev.* 2004. **104**(10): 4303.
- 97. Xu K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014. 114(23): 11503.
- 98. Ohtaki H. Structural studies on solvation and complexation of metal ions in nonaqueous solutions. *Pure Appl. Chem.* 1987. **59**(9): 1143.
- Dudley J.T., Wilkinson D.P., Thomas G., LeVae R., Woo S., Blom H., Horvath C., Juzkow M.W., Denis B., Juric P., Aghakian P., Dahn J.R. Conductivity of electrolytes for rechargeable lithium batteries. *J. Power Sources*. 1991. 35(1): 59.
- Aurbach D., Zinigrad E., Cohen Y., Teller H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. *Solid State Ionics*. 2002. 148(3–4): 405.
- Dey A.N. Film formation on lithium anode in propylene carbonate. In: *Electrochem. Soc. Fall Meeting.* N 62. (N.J. Ext. Abstr. 1970).
- 102. Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems the solid electrolyte interphase model. *J. Electrochem. Soc.* 1979.**126**(12): 2047.
- Nazri G., Muller R.H. Composition of surface layers on Li electrodes in PC, LiClO₄ of very low water content. J. Electrochem. Soc. 1985. 132(9): 2050.
- Peled E., Golodnitsky D., Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 1997. 144(8): L208.
- 105. Aurbach D., Zinigrad E., Cohen Y., Teller H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. *Solid State Ionics*. 2002. **148**(3): 405.
- Aurbach D., Gottlieb H. The electrochemical behavior of selected polar aprotic systems. *Electrochim. Acta.* 1989. 34(2): 141.
- Aurbach D., Zaban A., Gofer Y., Ely Y.E., Weissman I., Chusid O., Abramson O. Recent studies of the lithiumliquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems. *J. Power Sources*. 1995. 54(1): 76.
- Aurbach D., Markovsky B., Shechter A., Ein-Eli Y., Cohen H. A comparative study of synthetic graphite and li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. *J. Electrochem. Soc.* 1996.143(12): 3809.
- Schechter A., Aurbach D., Cohen H. X-ray photoelectron spectroscopy study of surface films formed on li electrodes freshly prepared in alkyl carbonate solutions. *Langmuir*. 1999. 15(9): 3334.
- 110. Xu W., Wang J., Ding F., Chen X., Nasybulin E., Zhang Y., Zhang J.-G. Lithium metal anodes for rechargeable batteries. *Energy Environ. Sci.* 2014. 7(2): 513.
- 111. Cheng X.-B., Zhang R., Zhao C.-Z., Wei F., Zhang J.-G., Zhang Q. A review of solid electrolyte interphases on lithium metal anode. *Adv. Sci.* 2016. **3**(3):1500213.
- 112. Zhang K., Lee G.-H., Park M., Li W., Kang Y.-M. Recent developments of the lithium metal anode for rechargeable non- aqueous batteries. *Adv. Energy Mater.* 2016. **6**(20): 1600811.
- 113. Wang L., Menakath A., Han F., Wang Y., Zavalij P.Y., Gaskell K.J., Borodin O., Iuga D., Brown S.P., Wang C., Xu K., Eichhorn B.W. Identifying the components of the solid – electrolyte interphase in Li-ion batteries. *Nat. Chem.* 2019. **11**(9): 789.
- 114. Kanamura K., Tamura H., Takehara Z. XPS analysis of a lithium surface immersed in propylene carbonate solution containing various salts. *J. Electroanal. Chem.* 1992. **333**(1–2): 127.
- 115. Kanamura K., Tamura H., Shiraishi S., Takehara Z. XPS analysis of lithium surfaces following immersion in various solvents containing LiBF₄. *J. Electrochem. Soc.* 1995. **142**(2): 340.
- 116. Lu P., Harris S.J. Lithium transport within the solid electrolyte interphase. *Electrochem. Commun.* 2011. **13**(10): 1035.
- Shi S.Q., Lu P., Liu Z., Qi Y., Hector L.G., Hong Li, Harris S.J. Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 2012. 134(37): 15476.

- Zhang Q.L., Pan J., Lu P., Liu Z., Verbrugge M.W., Sheldon B.W., Cheng Y.-T., Qi Y., Xiao X. Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. *Nano Lett.* 2016. 16(3): 2011.
- 119. Sazhin S.V., Gorodyskii A.V., Khimchenko M.Y., Kuksenko S.P. New parameters for lithium cyclability in organic electrolytes for secondary batteries. *J. Electroanal. Chem.* 1993. **344**(1–2): 61.
- Kedrinsky I.A., Gerasimova L.K., Shilkin V.I., Shmydko I.I. Anode corrosion in lithium power supplies. *Electrochemistry*. 1995. 31(4): 356. [in Russian].
- Kuksenko S.P. Aluminum Foil as Anode Material for Lithium–Ion Batteries: Effect of Electrolyte Compositions on Cycling Parameters. *Russ. J. Electrochem.* 2013. 49(1): 67.
- 122. Winter M. The solid electrolyte interphase the most important and the least understood solid electrolyte in rechargeable Li batteries. Zeitschriftfür Physikalische Chemie. 2009. 223(10–11): 1395.
- 123. Verma P., Maire P., Novak P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. *Electrochim. Acta*. 2010. **55**(22): 6332.
- 124. Gauthier M., Carney T.J., Grimaud A., Giordano L., Pour N., Chang H.-H., Fenning D.P., Lux S.F., Paschos O., Bauer C., Maglia F., Lupart S., Lamp P., Yang S.-H. Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights. *J. Phys. Chem. Lett.* 2015. 6(22): 4653.
- Cresce A., Russell S.M., Baker D.R., Gaskell K.J., Xu K. In situ and quantitative characterization of solid electrolyte interphases. *Nano Lett.* 2014. 14(3): 1405.
- 126. Zheng J., Zheng H., Wang R., Ben L., Lu W., Chen L., ChenL., Li H. 3D visualization of inhomogeneous multilayered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. *Phys. Chem. Chem. Phys.* 2014. 16(26): 13229.
- 127. Pirskyy Y., Murafa N., Korduban O.M., Subrt J. Nanostructured catalysts for oxygen electroreduction based on bimetallic monoethanolamine complexes of Co (III) and Ni (II). J. Appl. Electrochem. 2014. 44(11): 1193.
- 128. Grande L., Paillard E., Hassoun J., Park J.-B., Lee Y.-J., Sun Y.-K., Passerini S., Scrosati B. The lithium/air battery: still an emerging system or a practical reality? *Adv. Mater.* 2015. **27**(5): 784.
- 129. He P., Zhang T., Jiang J., Zhou H. Lithium–Air Batteries with Hybrid Electrolytes. J. Phys. Chem. Lett. 2016. 7(7): 1267.
- Bass K., Mitchell P.J., Wilcox G.D., Smith J. Methods for the reduction of shape change and dendritic growth in zinc – based secondary cells. J. Power Sources. 1991. 35(3): 333.
- 131. Linden D., Reddy T.B. Handbook of batteries. 3rd ed. (New York: McGrawHill, 2002).
- Zhuang G.V., Xu K., Yang H., Jow T.R., Ross P.N. Lithium Ethylene Dicarbonate Identified as the Pimary Product of Chemical and Electrochemical Reduction of EC in 1.2 M / EC:EMC Electrolyte. J. Phys. Chem. B. 2005. 109(37): 17567.
- Zhang X., Kostecki R., Richardson T.J., Pugh J.K., Ross P.N. Electrochemical and Infrared Studies of the Reduction of Organic Carbonates. J. Electrochem. Soc. 2001. 148(12): A1341.
- Zhuang G.V., Yang H., Blizanac B., Ross P.N. A Study of Electrochemical Reduction of Ethylene and Propylene Carbonate Electrolytes on Graphite Using ATR – FTIR Spectroscopy. *Electrochem. Solid State Lett.* 2005. 8(9): A441.
- Gresce A.V., Borodin O., Xu K. Correlating Li⁺ Solvation Sheath Structure with Interphasial Chemistry on Graphite. J. Phys. Chem. C. 2012. 116(50): 26111.
- Zheng J., Kim M.S., Tu Z., Choudhury S., Tian Tang T., Archer L.A. Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. *Chem. Soc. Rev.* 2020. 49(9): 2701.
- 137. Satter R. Effects of Light-Dark Cycles. Science. 1976. 192(4245): 1226.
- 138. Nakajima K. Conversation too Hot to Handle. Mainichi Daily News. 1989. P. 1.
- 139. Pennington S. Moving in on Moli. Vancouver Sun. Business Section. (September 28, 1991).
- 140. Rao B.M.L., Francis R.W., Christopher H.A. Lithium-Aluminum Electrode. J. Electrochem. Soc. 1977. **124**(10): 1490.
- Lin D., Liu Y., Cui Y. Reviving the Lithium Metal Anode for High-Energy Batteries. *Nat. Nanotechnol.* 2017. 12: 194.
- Guo Y., Li H., Zhai T. Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries. Adv. Mater. 2017. 29(29): 1700007.
- Tikekar M.D., Choudhury S., Tu Z., Archer L.A. Design principles for electrolytes and interfaces for stable lithiummetal batteries. *Nat. Energy*. 2016. 1: 16114.
- Rehnlund D., Lindgren F., Böhme S., Nordh T., Zou Y., Pettersson J., Bexell U., Boman M., Edström K., Nyholm L. Lithium trapping in alloy forming electrodes and current collectors for lithium based batteries. *Energy Environ. Sci.* 2017. 10(6): 1350.
- Wang D., Zhang W., Zheng W., Cui X., Rojo T., Zhang Q. Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface. *Energy. Adv. Sci.* 2017. 4(1): 1600168.

- Li X., Zheng J., Ren X., Engelhard M.H., Zhao W., Li Q., Zhang J.-G., Xu W. Dendrite-free and performanceenhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives. *Adv. Energy Mater.* 2018. 8(15): 1703022.
- 147. López C.M., Vaughey J.T., Dees D.W. Morphological transitions on lithium metal anodes. J. Electrochem. Soc. 2009. 156(9): A726.
- 148. Bieker G., Winter M., Bieker P. Electrochemical in situ investigations of sei and dendrite formation on the lithium metal anode. *Phys. Chem. Chem. Phys.* 2015. **17**(14): 8670.
- 149. Wandt J., Marino C., Gasteiger H.A., Jakes P., Eichel R.-A., Granwehr J. Operando electron paramagnetic resonance spectroscopy formation of mossy lithium on lithium anodes during charge-discharge cycling. *Energy Environ. Sci.* 2015.8(4): 1358.
- 150. Sacci R.L., Black J.M., BalkeN., Dudney N.J., More K.L., Unocic R.R. Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. *Nano Lett.* 2015. **15**(3): 2011.
- Dornbusch D.A., Hilton R., Lohman S.D., Suppes G.J. Experimental Validation of the Elimination of Dendrite Short-Circuit Failure in Secondary Lithium-Metal Convection Cell Batteries. J. Electrochem. Soc. 2015. 162(3): A262.
- Lu D., Shao Y., Lozano T., Bennett W.D., Graff G.L., Polzin B., Zhang J., Engelhard M.H., Saenz N.T., Henderson W.A., Bhattacharya P., Liu J., Xiao J. Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes. *Adv. Energy Mater.* 2015. 5(3): 1400993.
- 153. Chang H.J., Ilott A.J., Trease N.M., Mohammadi M., Jerschow A., Grey C.P. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using ⁷Li MRI. *J. Am. Chem. Soc.* 2015. **137**(48): 15209.
- 154. Li W., Zheng H., Chu G., Luo F., Zheng J., Xiao D., Li X., Gu L., Li H., Wei X., Chen Q., Chen L. Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation. *Faraday Discuss.* 2014. **176**: 109.
- 155. Lazzari M., Scrosati B. A cyclable lithium organic electrolyte cell based on two intercalation electrodes. *J. Electrochem. Soc.* 1980. **127**(3): 773.
- 156. Nagaura T., Tozawa K. Lithium ion rechargeable battery. Prog. Batteries and Solar Cells. 1990. 9: 209.
- 157. Lang J., Qi L., Luo Y., Wu H. High performance lithium metal anode: progress and prospects. *Energy Storage Mater*. 2017. 7: 115.
- Gauthier M., Carney T.J., Grimaud A., Giordano L., Pour N., Chang H.-H., Fenning D.P., Lux S.F., Paschos O., Bauer Ch., Maglia F., Lupart S., Lamp P., Shao-Horn Y. Electrode–Electrolyte Interface in Li-ion Batteries: Current Understanding and New Insights. *J. Phys. Chem. Lett.* 2015. 6(22): 4653.
- Fong R., Sacken U., Dahn J.R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 1990.137(7): 2009.
- Naji A., Ghanbaja J., Humbert B., Willmann P., Billaud D. Electroreduction of graphite in LiClO₄-ethylene carbonate electrolyte: characterization of the passivating layer by transmission electron microscopy and fourier-transform infrared spectroscopy. *J. Power Sources.* 1996. 63(1): 33.
- Novak P., Joho F., Imhof R., Panitz J.C., Haas O. In situ investigation of the interaction between graphite and electrolyte solutions. J. Power Sources. 1999. 81–82: 212.
- Vetter J., Novak P., Wagner M.R., Veit C., Möller K-C., Besenhard J., Winter M., Wohlfahrt-Mehrens M., Vogler C., Hammouce A. Ageingmechanisms in lithium-ionbatteries. J. Power Sources. 2005. 147(1–2): 269.
- 163. Heine J., Hilbig P., Qi X., Niehoff P., Winter M., Bieker P. Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries. *J. Electrochem. Soc.* 2015. **162**(6): A1094.
- Zuo X., Zhu J., Müller-Buschbaum P., Cheng Y.-J. Silicon based lithium-ion battery anodes: A chronicle perspective review. *Nano Energy*. 2017. 31: 113.
- Graetz J., Ahn C.C., Yazami R., Fultz B. Highly reversible lithium storage in nanostructured silicon. *Electrochem.* Solid-State Lett. 2003. 6(9): A194.
- Xie J., Cao G.S., Zhao X.B. Electrochemical performances of Si-coated MCMB as anode material in lithium-ion cells. *Mater. Chem. Phys.* 2004. 88(2–3): 295.
- Szczech J.R., Jin S. Nanostructured silicon for high capacity lithium battery anodes. *Energy Environ. Sci.* 2011. 4(1): 56.
- Liu R., Duay J., Lee S.B. Heterogeneous nanostructured electrode materials for electrochemical energy storage. *Chem. Commun.* 2011. 47(5): 1384.
- Lee K.T., Cho J. Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. *Nano Today*. 2011. 6(1): 28.
- Wu H., Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. *Nano Today*. 2012. 7(5): 414.

- 171. Chan C.K., Peng H., Liu G., McIlwrath K., Zhang X.F., Huggins R.A., Cui Y. High-performance lithium battery anodes using silicon nanowires. *Nat. Nanotechnol.* 2008. **3**(1): 31.
- 172. Magasinski A., Dixon P., Hertzberg B., Kvit A., Ayala J., Yushin G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. *Nat. Mater.* 2010. **9**(4): 353.
- Kovalenko I., Zdyrko B., Magasinski A., Hertzberg B., Milicev Z., Burtovyy R., Luzinov I., Yushin G. A major constituent of brown algae for use in high-capacity li-ion batteries. *Science*. 2011. 334(6052): 75.
- 174. Wu H., Chan G., Choi J.W., Ryu I., Yao Y., McDowell M.T., Lee S.W., Jackson A., Yang Y., Hu L., Cui Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. *Nat. Nanotechnol.* 2012. 7(5): 310.
- Krivchenko V.A., Itkis D.M., Evlashin S.A., Semenenko D.A., Goodilin E.A., Rakhimov A.T., Stepanov A.S., Suetin N.V., Pilevsky A.A., Voronin P.V. Carbon nanowalls decorated with silicon for lithium-ion batteries. *Carbon*. 2012. 50(3): 1438.
- Liu N., Lu Z., Zhao J., McDowell M.T., Lee H.-W., Zhao W., Cui Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. *Nat. Nanotechnol.* 2014. 9(3): 187.
- 177. Kuksenko S.P. Silicon-Containing Anodes with High Capacity Loading for Lithium-Ion Batteries. *Russ. J. Electrochem.* 2014. **50**(6): 537.
- Feng K., Li M., Liu W., Kashkooli A.Gh., Xiao X., Cai M., Chen Zh. Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. *Small*. 2018. 14(8): 1702737.
- 179. Kuksenko S.P., Lutsenko V.G. Li⁺-insertionintofractalSi nanocarboncomposite. In: *Theodor Grotthuss Electrochemistry Conference*. (Vilnius, DABA, 2005). P. 95.
- Kim H., Han B., Choo J., Cho J. Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries. Ang. Chem. Int. Ed. 2008. 47(52): 10151.
- Zhu J., Gladden C., Liu N., Cui Y., Zhang X. Nanoporous silicon networks as anodes for lithium ion batteries. *Phys. Chem. Chem. Phys.* 2013. 15(2): 440.
- Lv R., Yang J., Gao P., NuLi Y., Wang J. Electrochemical behavior of nanoporous/nanofibrous Si anode materials prepared by mechanochemical reduction. J. Alloys Compd. 2010. 490(1–2): 84.
- Liu N., Wu H., McDowell M.T., Yao Y., Wang C., Cui Y. A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. *Nano Lett.* 2012. 12(6): 3315.
- 184. Kang K., Lee H.-S., Han D.-W., Kim G.-S., Lee D., Lee G., Kang Y.-M., Jo M.-H. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery. *Appl. Phys. Lett.* 2010. **96**(5): 053110.
- Kim H., Cho J. Superior Lithium Electroactive Mesoporous Si@Carbon Core Shell Nanowires for Lithium Battery Anode Material. Nano Lett. 2008. 8(11): 3688.
- 186. Park M.-H., Kim M.G., Joo J., Kim K., Kim J., Ahn S., Cui Y., Cho J. Silicon Nanotube Battery Anodes. *Nano Lett.* 2009. **9**(11): 3844.
- Cui L.-F., Yang Y., Hsu C.-M., Cui Y. Carbon Silicon Core Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. *Nano Lett.* 2009. 9(9): 3370.
- Evanoff K., Benson G., Schauer M., Kovalenko I., Lashmore D., Ready W.J., Yushin G. Ultrastrong Silicon Coated Carbon Nanotube Nonwoven Fabric as a Multifunctional Lithium – Ion Battery Anode. ACS Nano. 2012. 6(11): 9837.
- Xiang H., Zhang K., Ji G., Lee J.Y., Zou C., Chen X., Wu J. Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. *Carbon.* 2011. 49(5): 1787.
- Evanoff K., Magasinski A., Yang J., Yushin G. Nanosilicon-Coated Graphene Granules as Anodes for Li-ion Batteries. Adv. Energy Mater. 2011. 1(4): 495.
- Zhou X., Yin Y.-X., Wan L.-J., Guo Y.-G. Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium – Ion Batteries. Adv. Energy Mater. 2012. 2(9): 1086.
- Zhu C., Zhang Y., Ma Z., Wang H., Sly G.L. Yolk-void-shell Si–C nano-particles with tunable void size for highperformance anode of lithium ion batteries. *Nanotechnology*. 2021. 32(8): 085403.
- Park G.D., Choi J.H., Jung D.S., Park J.S., Kang Y.C. Three-dimensional porous pitch-derived carbon coated Si nanoparticles-CNT composite microsphere with superior electrochemical performance for lithium ion batteries. *J. Alloys Compd.* 2020. 821: 153224.
- 194. Chen H., Hou X., Chen F., Wang S., Wu B, Ru Q., Qin H., Xia Y. Milled flake graphite/plasma nanosilicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. *Carbon*. 2018. **130**: 433.
- 195. Wang F., Wang B., Ruan T., Gao T., Song R., Jin F., Zhou Y., Wang D., Liu H., Dou S. Construction of Structure-Tunable Si@Void@C Anode Materials for Lithium-Ion Batteries through Controlling the Growth Kinetics of Resin. ACS Nano. 2019. 13(10): 12219.
- 196. Ashuri M., He Q., Zhang K., Emani S., Shaw L.L. Synthesis of hollow silicon nanospheres encapsulated with a carbon shell through sol-gel coating of polystyrene nanoparticles. *J. Sol-Gel Sci. Technol.* 2017. **82**(1): 201.

- 197. Liang G., Qin X., Zou J., Luo L., Wang Y., Wu M., Zhu H., Chen G., Kang F., Li B. Electrosprayed siliconembedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. *Carbon*. 2018. **127**: 424.
- 198. Huang H., Rao P., Choi W.M. Carbon-coated silicon/crumpled graphene composite as anode material for lithiumion batteries. *Curr. Appl. Phys.* 2019. **19**(12): 1349.
- Guan P., Li J., Lu T., Guan T., Ma Z., Peng Z., Zhu X., Zhang L. Facile and Scalable Approach To Fabricate Granadilla-like Porous-Structured Silicon-Based Anode for Lithium Ion Batteries. ACS Appl. Mater. Interfaces. 2018. 10(40): 34283.
- Zhu X., Choi S.H., Tao R., Jia X., Lu Yu. Building high-rate silicon anodes based on hierarchical Si@C@CNT nanocomposite. J. Alloys Compd. 2019. 791: 1105.
- 201. Wang Z., Mao Z., Lai L., Okubo M., Song Y.H., Zhou Y.J., Liu X., Huang W. Sub-micron silicon/pyrolyzedcarbon@natural graphite self-assembly composite anode material for lithium-ion batteries. *Chem. Eng. J.* 2017. **313**: 187.
- 202. Park B.H., Jeong J.H., Lee G.-W., Kim Y.H., Roh K.C., Kim K.B. Highly conductive carbon nanotube microspherical network for high-rate silicon anode. *J. Power Sources*. 2018. **394**: 94.
- 203. Yan Y., Xu Z., Liu C., Dou H., Wei J., Zhao X., Ma J., Dong Q., Xu H., He Y.-S., Ma Z.F., Yang X. Rational Design of the Robust Janus Shell on Silicon Anodes for High-Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces. 2019. 11(19): 17375.
- Luo J., Zhao X., Wu J., Jang H.D., Kung H.H., Huang J. Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. J. Phys. Chem. Lett. 2012. 3(13): 1824.
- He Y., Han F., Wang F., Tao J., Wu H., Zhang F., Liu J. Optimal microstructural design of pitch-derived soft carbon shell in yolk-shell silicon/carbon composite for superior lithium storage. *Electrochim. Acta*. 2021. 373: 137924.
- Xie J., Tong L., Su L., Xu J., Wang L., Wang J. Core-shell yolk-shell Si@C@Void@Cnanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. J. Power Sources. 2017. 342: 529.
- Guo S., Hu X., Hou Y., Wen Z. Tunable Synthesis of Yolk–Shell Porous Silicon@Carbon for Optimizing Si/C-Based Anode of Lithium-Ion Batteries. ACS Appl. Mater. Interfaces. 2017. 9(48): 42084.
- Zhao H., Xu X., Yao Y., Zhu H., Li Y. Assembly of Si@Void@Graphene Anodes for Lithium-Ion Batteries: In Situ Enveloping of Nickel-Coated Silicon Particles with Graphene. *ChemElectroChem.* 2019. 6(17): 4617.
- 209. Ding X., Liu X., Huang Y., Zhang X., Zhao Q., Xiang X., Li G., He P., Wen Z., Li J., Huang Y. Enhanced electrochemical performance promoted by monolayer graphene and void space in silicon composite anode materials. *Nano Energy*. 2016. 27: 647.
- Takamura T., Ohara S., Uehara M., Suzuki J., Sekine K. A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life. J. Power Sources. 2004. 129: 96.
- Park O.K., Cho Y., Lee S., Yoo H.-C., Song H.-K., Cho J. Who will drive electric vehicles, olivine or spinel? Energy Environ. Sci. 2011. 4(5): 1621.
- 212. Shen T., Xie D., Tang W., Wang D., Zhang X., Xia X., Wang X., Tu J. Biomass-derived carbon/silicon threedimensional hierarchical nanostructure as anode material for lithium ion batteries. *Mat. Res. Bull.* 2017. **96**(4): 340.
- Wang M.-S., Song W.-L., Wang J., Fan L.-Z. Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries. *Carbon.* 2015. 82: 337.
- 214. Wu J., Qin X., Zhang H., He Y.-B., Li B., Ke L., Lv W., Du H., Yang Q.-H., Kang F. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. *Carbon*. 2015. **84**: 434.
- Su L., Xie J., Xu Y., Wang L., Wang Y., Ren M. Preparation and lithium storage performance of yolk-shell Si@void@C nanocomposites. *Phys. Chem. Chem. Phys.* 2015. 17(27): 17562.
- Favors Z., Wang W., Bay H.H., Mutlu Z., Ahmed K., Liu C., Ozkan M., Ozkan C.S. Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Li-ion Batteries. *Sci. Rep.* 2014. 4: 5623.
- Smith A.J., Burns J.C., Zhao X., Deijun X., Dahn J.R. A high precision coulometry study of the SEI growth in Li/graphite cells. J. Electrochem. Soc. 2011. 158(5): A447.
- Smith A.J., Burns J.C., Dahn J.R. A High Precision Study of the Coulombic Efficiency of Li-Ion Batteries. Electrochem. Solid-State Lett. 2010. 13(12): A177.
- Kuksenko S.P. Cycling Parameters of Silicon Anode Materials for Lithium-Ion Batteries. *Russ. J. Appl. Chem.* 2010. 83(4): 641.
- 220. Kuksenko S.P. Silicon Electrodes for Lithium-Ion Batteries: Ways of Cycling Parameters Improving. *Fundamental Problems in Lithium Electrochemical Systems*. (Novocherkassk: SRSTU (NPI), 2010). P. 147. [in Russian].
- 221. Kuksenko S.P., Kovalenko I.O., Tarasenko Yu.O., Kartel M.T. Forminga Stable Amorphous Phasein the Carbon– Coated Siliconupon Deep Electrochemical Lithiation. *Him. Fiz. Tehnol. Poverhn.* 2010. 1(1): 57. [in Russian].
- 222. Kwon Y., Ryu G.H., Oh S.M. Performance of electrochemically generated Li₂₁Si₅ phase for lithium-ion batteries. *Electrochim. Acta.* 2010. **55**(27): 8051.

- Holzapfel M., Buqa H., Krumeich F., Novák P., Petrat F.-M., Veit C. Chemical Vapor Deposited Silicon/Graphite Compound Material as Negative Electrode for Lithium – Ion Batterries. *Electrochem. Solid-State Lett.* 2005. 8(10): A516.
- 224. Kuksenko S., Tarasenko Yu. Aluminum Foil as Multifunctional Material for High Energy Lithium–Ion Batteries with Low Cost of Manufacturing. *VIII Ukrainian Electrochemical Congress*. (Lviv, 4–7 June 2018): Collection of Scientific Articles. A.A. Omel'chuk, P.E. Gladyshevskii, O.V. Reshetnyak (eds.). Part 2. (Lviv: Research and Publishing Center of the T. Shevchenko Scientific Society, 2018). P. 297. [in Ukrainian].
- 225. Li H., Yamaguchi T., Matsumoto S., Hoshikawa H., Kumagai T., Okamoto N.L., Ichitsubo T. Circumventing huge volume strain in alloy anodes of lithium batteries. *Nat. Commun.* 2020. **11**: 1584.
- 226. Qin B., Jeong S., Zhang H., Ulissi U., Carvalho D., Varzi A., Passerini S. Enabling Reversible (De-)Lithiation of Aluminum via the Use of Bis(fluorosulfonyl)imide-based Electrolytes. *ChemSusChem.* 2019. **12**(1): 208.
- 227. Tahmasebi M.H., Kramer D., Mönig R., Boles S.T. Insights into Phase Transformations and Degradation Mechanisms in Aluminum Anodes for Lithium-Ion Batteries. J. Electrochem. Soc. 2019. 166(3): A5001.
- 228. Tasaki K., Harris S.J. Computational study on the solubility of lithium salts formed on lithium ion battery negative electrode in organic solvents. *J. Phys. Chem. C.* 2010. **114**(17): 8076.
- Yan J., Xia B.-J., Su Y.-C., Zhou X.-Z., Zhang J., Zhang H.-G. Phenomenologically modeling the formation and evolution of the solid electrolyte interface on the graphite electrode for lithium-ion batteries. *Electrochim. Acta*. 2008. 53(24): 7069.
- Grugeon S., Jankowski P., Cailleu D., Forestier C., Sannier L., Armand M., Johansson P., Laruelle S. Towards a better understanding of vinylene carbonate derived SEI-layers by synthesis of reduction compounds. *J. Power Sources*. 2019. 427: 77.
- Jung R., Metzger M., Haering D., Solchenbach S., Marino C., Tsiouvaras N., Stinner C., Gasteiger H.A. Consumption of Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li – Ion Batteries. *J. Electrochem. Soc.* 2016. 163(8): A1705.
- 232. Yohannes Y.B., Lin S.D., Wu N.-L. In Situ DRIFTS Analysis of Solid Electrolyte Interphase of Si-Based Anode with and without Fluoroethylene Carbonate Additive. *J. Electrochem. Soc.* 2017. **164**(14): A3641.
- Ein-Eli Y., Thomas S.R., Koch V., Aurbach D., Markovsky B., Schechter A. Ethylmethylcarbonate, a Promising Solvent for Li-Ion Rechargeable Batteries. J. Electrochem. Soc. 1996. 143(12): L273.
- 234. Su C.-C., He M., Shi J., Amine R., Zhang J., Amine K. Solvation Rule for Solid-Electrolyte Interphase Enabler in Lithium-Metal Batteries. *Angew. Chem. Int. Ed.* 2020. **59**(41): 18229.
- Shi Q., Heng S., Qu Q., Gao T., Liu W., Hang L., Zheng H. Constructing an elastic solid electrolyte interphase on graphite: a novel strategy suppressing lithium inventory loss in lithium-ion batteries. *J. Mater. Chem. A.* 2017. 5(22): 10885.
- Choi N.-S., Yew K.H., Lee K.Y., Sung M., Kim H, Kim S.-S. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J. Power Sources. 2006. 161(2): 1254.
- Kuksenko S.P., Kovalenko I.O. Synthesis of a Silicon–Graphite Composite for the Hybrid Electrode of Lithium– Ion Batteries. *Russ. J. Appl. Chem.* 2010. 83(10): 1811.
- Kuksenko S.P., Kovalenko I.O. Silicon Nanopowder as Active Material for Hybrid Electrodes of Lithium-Ion Batteries. *Russ. J. Appl. Chem.* 2011. 84(7): 1179.
- Kuksenko S.P., Kuts V.S., Tarasenko Yu.O., Kartel M.T. Electrochemical Investigations and Quantum Chemical Calculations of the System Si_nLi_m. *Him. Fiz. Tehnol. Poverhn.* 2011. 2(3): 221. [in Russian].
- 240. Kuksenko S.P., Kovalenko I.O., Tarasenko Yu.O., Kartel M.T. Nanocomposite Slicon–Carbon for Hybrid Electrodes of Lithium-Ion Batteries. *Voprosy Khimii I Khimicheskoi Tekhnologii*. 2011. **4**(1): 299. [in Russian].
- 241. Nakai H., Kubota T., Kita A., Kawashima A. Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes. J. Electrochem. Soc. 2011. **158**(7): A798.
- Etacheri V., Haik O., Goffer Y., Roberts G.A., Stefan I.C., Fasching R., Aurbach D. Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery anodes. *Langmuir*. 2012. 28(1): 965.
- Lin Y.-M., Klavetter K.C., Abel P.R., Davy N.C., Snider J.L., Heller A., Mullins B. High Performance Silicon Nanoparticle Anode in Fluoroethylene Carbonate-Based Electrolyte for Li-Ion Batteries. *Chem. Commun.* 2012. 48(58): 7268.
- Elazari R., Salitra G., Gershinsky G., Garsuch A., Panchenko A., Aurbach D. Li Ion Cells Comprising Lithiated Columnar Silicon Film Anodes, TiS₂ Cathodes and Fluoroethylene Carbonate (FEC) as a Critically Important Component. J. Electrochem. Soc. 2012. 159(9): A1440.
- 245. Ma L., Glazier S.L., Petibon R., Xia J., Peters J.M., Liu Q., Allen J., Doig R.N.C., Dahn J.R. A Guide to Ethylene Carbonate-Free Electrolyte Making for Li-Ion Cells. *J. Electrochem. Soc.* 2017. 164(1): A5008.
- Zhang J., Shen C., Liu P., Qiao Y. Understanding the effect of electrolyte on the cycle and structure stability of high areal capacity Si-Al film electrode. *Ionics*. 2019. 25(2): 483.

- 247. Xia J., Aiken C.P., Ma L., Kim G.Y., Burns J.C., Chen L.P., Dahn J.R. Combinations of Ethylene Sulfite (ES) and Vinylene Carbonate (VC) as Electrolyte Additives in Li(Ni_{1/3}Mn_{1/3}Co_{1/3})O₂/Graphite Pouch Cells. *J. Electrochem. Soc.* 2014. **161**(6): A1149.
- 248. Jung H.M., Park S.-H., Jeon J., Choi Y., Yoon S., Cho J.-J., Oh S., Kang S., Han Y.-K., Lee H. Fluoropropane sultone as an SEI-forming additive that outperforms vinylene carbonate. *J. Mater. Chem. A.* 2013. **1**(38): 11975.
- Liu S., Ji X., Piao N., Chen J., Eidson N., Xu J., Wang P., Chen L., Zhang J., Deng T., Hou S., Jin T., Wan H., Li J., Tu J., Wang C. Inorganic-rich Solid Electrolyte Interphase for Advanced Lithium Metal Batteries in Carbonate Electrolytes. *Angew. Chem. Int. Ed.* 2021. 60(7): 3661.
- 250. Wang H., Tan H., Luo X., Wang H., Ma T., Lv M., Song X., Jin S., Chang X., Li X. Progress in aluminum-based anode materials for lithium ion batteries *J. Mater. Chem. A.* 2020. **8**(48): 25649.
- 251. Soto F.A., Martinez de la Hoz J.M., Seminario J.M., Balbuena P.B. Modeling solid-electrolyte interfacial phenomena in silicon anodes. *Curr. Opin. Chem. Eng.* 2016. **13**: 179.
- Philippe B., Dedryvère R., Gorgoi M., Rensmo H., Gonbeau D., Edström K. Role of the LiPF₆ Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries – A Photoelectron Spectroscopy Study. *Chem. Mater.* 2013. 25(3): 394.
- Kuksenko S.P., Tarasenko Yu.O., Kovalenko I.O, Kartel M.T. A carbon coating of micro- and nanosilicon: progress of silicon anode materials for lithium-ion batteries. *Chemistry, Physics and Surface Technology.* (Kyiv: Naukova dumka. 2009). 15: 144. [in Russian].
- 254. Son, B.D., Lee J.K., Yoon W.Y. Effect of Tungsten Nanolayer Coating on Si Electrode in Lithium-ion Battery. *Nanoscale Res. Lett.* 2018. **13**(1): 58.
- 255. Zhang Y., Liu Z., Zhu C., Guo X., Liu W., Qu Y. Boosting anode performance of mesoporous Si by embedding copper nano-particles. *J. Alloys Compd.* 2021. **850**: 156863.
- 256. Arie A.A., Song J.O., Lee J.K. Structural and electrochemical properties of fullerene coated silicon film as anode materials for lithium secondary batteries. *Mater. Chem. Phys.* 2009. **113**(1): 249.
- 257. Kuksenko S.P. Nonporous nanostructured 3D-silicon for anodes of lithium-ion batteries. In: *Nanotechnologies and Nanomaterials for Business and Technology Areas*. Booklet of nanotechnologies of the participants of the International Technology Meeting (November 22, 2013, Kyiv, Ukraine). P. 11.
- Kuksenko S.P. Nonporous 3D-Silicon High Efficiency Electrode Nanomaterial for New Generation of Lithium-Ion Batteries. In: *Nanotechnologies and Nanomaterials*. Technology Developments Book. (Lviv: Eurosvit, 2014). P. 218.
- 259. Kuksenko S.P. Silicon-Containing Anodes with Low Accumulated Irreversible Capacity for Lithium–Ion Batteries. *Russ. J. Appl. Chem.* 2013. **86**(5): 703.
- 260. Kuksenko S.P. Highly disordered silicon-containing carbon from polymethylphenylsiloxane as anode material for lithium-ion batteries: anomalous behavior in thin layer. *Russ. J. Appl. Chem.* 2016. **89**(8): 1237.
- Kuksenko S.P., Tarasenko Yu.A., Kartel M.T. Nonporous 3D-Silicon Electrode Nanomaterial of High Efficiency for Practical Using in Lithium-Ion Batteries. In: *Nanoscale Systems and Nanomaterials: Researches in Ukraine*. (Kyiv: Academperiodika, 2014). P. 638. [in Russian].
- 262. Kuksenko S.P. Irreversible capacity losses upon lithium insertion/extraction in graphite silicon electrodes. *Chemistry, physics and surface technology.* (Kyiv: Naukova dumka, 2008). **14**: 123. [in Russian].
- 263. Wetjen M., Pritzl D., Jung R., Solchenbach S., Ghadimi R., Gasteiger H.A. Differentiating the Degradation Phenomena in Silicon-Graphite Electrodes for Lithium-Ion Batteries. *J. Electrochem. Soc.* 2017. **164**(12): A2840.
- 264. Patent US 10483529 B2. HO1M 4/36, 4/38, 4/62, 10/0525, 10/04. Put S., Van Genechten D., Driesen K., Hu J., Strauven Y., Muto A., Ishii N., Takeuchi M. Composite powder for use in an anode of a lithium ion battery, method of preparing such a composite powder and method for analysing such a composite powder. 2019.
- 265. Patent US 10847782 B2. HO1M 4/134, C01B 32/00, C01B 33/03, H01M 4/362. Put S., Van Genechten D., Gilleir J., Marx N. Powder, electrode and battery comprising such a powder. 2020.
- Kaspar J., Graczyk-Zajac M., Lauterbach S., Kleebe H.-J., Riedel R. J. Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties. *J. Power Sources*. 2014. 269: 164.
- 267. Kuksenko S.P. Ceramic Si ⊃ SiOC&C nanostructures. Ukrainian-German Symposium on Physics and Chemistry of Nanostructures and on Nanobiotechnology. Kyiv, Ukraine. 21–25 September 2015. Book of Abstr. 96.
- 268. Zhao K., Tritsaris G.A., Pharr M., Wang W.L., Okeke O., Suo Z., Vlassak J.J., Kaxiras E. Reactive flow in silicon electrodes assisted by the insertion of lithium. *Nano Lett.* 2012. **12**(8): 4397.