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Caffeic acid (CA) is a phenolic, natural, biologically active compound with pronounced antioxidant and 

antimicrobial properties. It has a great potential for use in medicine and cosmetology and can also be used to obtain 

a number of other useful chemicals. Therefore, research aimed at improving the technologies for removing caffeic 

acid from plant raw materials and its processing is relevant. In our work, we have studied the complexes of caffeic 

acid with nanosized Al2O3, which is usually used in various plant biomass conversion technologies, using FT-IR 

spectroscopy, temperature-programmed desorption mass spectrometry (TPD MS), and DFT calculations. The FT-IR 

spectra analysis shows that CA can interact with aluminum oxide via both the carboxyl and phenolic groups. Based 

on the measured differences between carbonyl symmetric and asymmetrc vibrational peaks (Δν), it was found that 

carboxylate complexes of CA on the Al2O3 surface can have bidentate and monodentate structures. The mass 

spectrometric data analysis made it possible to identify compounds of 4-vinyl catechol, pyrocatechol, and phenol, 

which are decomposition products of the formed carboxylate and phenolic complexes. It was found that on the 

surface of the studied CA/Al2O3 samples, CA chelate complexes, formed with the participation of both OH groups of 

the aromatic ring, predominate. 
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INTRODUCTION 

Caffeic acid is a C6-C3 phenolic natural 

biologically active compound, which has 

pronounced antioxidant, antimicrobial and other 

biological activities [1–5], and has great 

potential for use in medicine [6, 7]. It is often 

found in plants that are used in food, and is 

mainly found in them as ester or bound to 

biopolymers [8]. CA, both free and esterified, is 

usually the most abundant phenolic acid and 

accounts for 75 to 100 % of the total 

hydroxycinnamic acid content in most fruits [9]. 

It is mainly involved in the synthesis of lignin, as 

well as the regulation of cell expansion, turgor 

pressure, phototropism, water flow and growth 

[10]. At the same time, a significant part of the 

biomass, which is the waste of the agro-

industrial complex, can be used to obtain caffeic 

acid for use in medicine, cosmetology and other 

areas. In particular, the source of СА can be pulp 

of apples [12–15], grapes [15–19], tomatoes etc. 

[20, 21], which are by-products of juice 

production and wines and are obtained in large 

quantities. At the same time, this biomass can be 

processed into other useful chemicals [22–37]. 

Aluminum oxide is one of the oxides 

commonly used as a catalyst and carrier, 

including in various plant biomass conversion 

technologies [38–41]. Therefore, the study of 

caffeic acid complexes, which they form when 

interacting with aluminum oxide, is significant 

for the development and optimization of         

CA-obtaining technologies, as well as 

technologies for processing plant raw materials 

into various chemicals that involve the use of 

aluminum oxide. In particular, data on the type 

of complexes formed and their relative amount 

on the oxide surface combined with data on their 

stability, as well as an understanding of the 

mechanisms of the biomass components 

transformations under the influence of various 

physical factors (irradiation, heating, solvents, 

and others) [11, 19, 20, 25, 23, 29, 32, 33], will 
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allow determining the possibilities of using 

Al2O3 in those or other technologies. 

Therefore, our work is devoted to 

determining the complexes formed by caffeic 

acid with nanosized aluminum oxide using      

FT-IR spectroscopy, temperature-programmed 

desorption mass spectrometry, and DFT 

calculations. 

EXPERIMENTAL 

The research used caffeic acid (≥ 98 %, 

Sigma-Aldrich) and alumina (99.5 %, 

SAr = 89 m2/g, Evonic), which had previously 

been calcined at 500 °C for two hours to remove 

any organic based impurities. 

CA/Al2O3 samples (0.3 and 0.6 mmol/g) 

were prepared by impregnating 100 mg of 

aluminum oxide with 2 ml of a solution of 

caffeic acid in ethanol (96 %). The resulting 

suspensions were mixed and dried in the open air 

at room temperature. 

IR-spectral studies were performed using a 

Fourier transform Thermo Nicolet NEXUS 

device in the diffuse reflectance mode. For 

research, samples of CA/Al2O3 and pure Al2O3 

were mixed with KBr in a ratio of 1:10, and pure 

CA – in a ratio of 1:100. All samples were 

thoroughly ground for the same amount of time. 

The spectra were recorded with a resolution of 

4 cm−1. The scanning speed was 0.5 cm/s, and 

the number of scans was 50. 

Examination of the samples using the 

method of temperature-programmed desorption 

mass spectrometry (TPD MS) was performed on 

a monopole mass spectrometer MH-7304A 

(Sumy, Ukraine) with electron ionization, 

converted for conducting thermodesorption 

measurements [42]. A sample weighing 10–20 mg 

was placed in a quartz-molybdenum ampoule 

and pumped at room temperature to a pressure of 

~ 5∙10−5 Pa. The sample was heated at the rate of 

0.17 °C/s from room temperature to 750 °C. 

Volatile decomposition products entered the 

ionization chamber of the mass spectrometer, 

where they were ionized and fragmented under 

the influence of electrons. The intensities of the 

ion currents of the products of desorption and 

thermolysis in the mass analyzer were recorded 

by a secondary electron multiplier BEU-6. The 

range of investigated masses was m/z 1–220. 

Registration and analysis of mass spectra were 

carried out by an automated computer system. 

Density functional (DFT) calculations were 

performed using the wB97XD functional with 

Grimme’s D2 dispersion corrections [43] and the 

6-311++G(d,p) basis set. Gaussian 09 software 

version B01 [44] was used. For the studied 

molecular systems, full geometry optimization 

was performed. The total charge of the system 

was zero. The results of the calculations were 

visualized using the molecular graphics program 

MaSK v. 1.3.0 [45]. As the simplest model of 

aluminum oxide, a cluster of composition 

Al2O6H6 [46] was used. 

RESULTS AND DISCUSSION 

FT-IR spectroscopic study. To find out 

which functional groups of CA are involved in 

the interaction with surface of aluminum oxide, a 

spectroscopic study of the CA/Al2O3 sample 

(0.3 mmol/g) was carried out by the FT-IR 

method (Fig. 1). 

For the CA/Al2O3 sample, the absence of an 

absorption maximum at 1645 cm−1, which 

corresponds to valence vibrations of the carbonyl 

group (ν(С=О)) [47], was found. This indicates 

the formation of carboxylate complexes. The 

new broad band at 1630 cm−1, which was 

masked by intense absorption of ν(С=О) in the 

CA spectrum, probably refers to ν(C=С) 

vibrations. A shoulder appears around 1670 cm−1 

for CA/Al2O3, which may correspond to ν(С=О). 

Whereas the absorption detected in the spectra of 

the studied samples in the region of 1394 cm−1 

probably corresponds to ν(СО) vibrations. Іt has 

been demonstrated that the magnitude of “∆ν” 

the separation between the asymmetric and 

symmetric carboxylate stretches (∆ν=νas(COO−)-

νs(COO−)) or, in case of monodentate 

coordination, between the C=O and C−O 

stretches (∆ν=ν(C=O)-ν(CO)) can be used to 

determine the type of the carboxylate (and non-

dissociated acid) binding [48, 49]. 

The absorptions at 1670 cm−1 ν(С=О) and 

1394 cm−1 ν(СО) most likely correspond to 

monodentate complexes, since the value of ∆ν is 

276 cm−1. The assignment of absorption bands to 

mono- and bidentate complexes was previously 

made on the example of surface complexes of 

valeric acid on the surface of metal oxide 

catalysts (SiO2, γ-Al2O3, CeO2/SiO2, Al2O3/SiO2 

and TiO2/SiO2) based on the values of ∆ν [28]. 

The results of quantum chemical calculations 

and IR spectroscopy [50] supported such an 

interpretation. According to [50], the absorption 
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at ~ 1680 cm−1 detected for valeric acid 

corresponds to monodentate carboxylate 

complexes. In addition, the CA/Al2O3 spectra 

contain absorptions in the region of 1400 and 

1568 cm−1, which apparently correspond to 

symmetric (νs(СОО−)) and asymmetric 

(νas(СОО−)) valence vibrations of carboxylate 

complexes. The structure of these complexes is 

bidentate, since ∆ν is 168 cm−1. 

 

  

Fig. 1. FT-IR spectra in the regions 1100−1800 cm−1 and 2000−3800 cm−1: (a) pure Al2O3, (b) CA/Al2O3, 

(c) pure CA 

 

Some changes were also detected in the 

region of valence vibrations of OH groups 

(Fig. 1 b). In particular, the maxima at 3226 and 

3440 cm−1 are not observed. There is only a 

broad band with a maximum of 3421 cm−1. 

These bands belong to the valence vibrations of 

phenolic hydroxyls [47, 48]. The first maximum 

may correspond to phenolic groups forming 

intermolecular hydrogen bonds in СА associates. 

The maximum at 3440 cm−1 is in the region 

where intermolecular hydrogen bonds in dimers 

of CA and intramolecular hydrogen bonds of CA 

are manifested [49]. Although the absorption of 

hydrogen-bonded OH groups of water, which 

may be present in the studied samples, may also 

appear here. The absence of a band at 3226 cm−1 

indicates the destruction of intermolecular 

hydrogen bonds between phenolic groups. 

In addition, the part of the spectrum between 

1000−1500 cm−1 changes significantly for the 

CA/Al2O3 sample. Absorptions of СOH-groups 

for phenolic and carboxyl groups appear here, so 

identifying bands in this part of the spectrum is 

challenging. The analysis of this area was 

performed based on a number of our own FT-IR 

spectroscopic studies of phenolic compounds 

[53, 54] and literature data [47, 55–57]. 

According to [47, 55], a broad intense band 

located around 1300 cm−1, which often has 

several maxima, is due to the superimposition of 

СOH vibrations of phenolic and carboxylic OH 

groups. For the CA/Al2O3 sample (0.3 mmol/g), 

this band undergoes a transformation, in 

particular, its maximum shifts from 1282 to 

1269 cm−1. The peak at 1298 cm−1, which may 

correspond to plane deformation vibrations of 

phenolic OH groups [47], practically disappears. 

In addition, the 1218 cm−1 band, which is also 

attributed to СOH vibrations [47], in the 

CA/Al2O3 spectrum (0.3 mmol/g) has a much 

lower relative intensity than for CA. The bands 

at 1327 and 1352 cm−1 disappear, which can be 

manifested as plane deformation vibrations of 

OH groups [52]. Instead, absorption appears at 

1338 cm−1. Such changes may mean that not 

only the carboxyl OH group, but also phenolic 

groups participate in the interaction with the 

oxide. According to a number of literature data 

[58–60], the formation of CA complexes with 

the participation of phenolic groups can also be 

evidenced by the position of the two most 

intense bands in the CA/Al2O3 (0.3 mmol/g) 

spectrum - near 1269 and 1497 cm−1. At the 

same time, the first of them is attributed to the 

C−OH valence vibrations of the aromatic 

nucleus, and the second to the ν(С=С) vibrations 

of the benzene ring. This spectrum characteristic 

is a sign of chelate complexes forming phenolic 

groups of caffeic acid with various oxides     

[58–60]. 

DFT calculations. We calculated the 

possible structures of carboxylate complexes of 

caffeic acid on the aluminum oxide surface. 

Table 1 shows the value of the Gibbs free energy 
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at the temperature of 421 K (G421) for the 

calculated structures. The structures of CA 

complexes with a cluster of composition 

Al2O6H6 are presented in Fig. 2. 

According to the performed calculations, 

caffeic acid can form phenolate complexes (F1 

and F2) and both monodentate carboxylate    

(C1-C3) and bidentate bridge (C4) complexes 

over alumina, Fig. 2. 
 

 

Fig. 2. Possible structures of caffeic acid complexes with alumina (carboxylate complexes: С1, С2, C3, C4 and 

phenolate complexes – F1, F2) 

 

Table 1. Gibbs free energy values for the temperature 421K (G421) for the calculated structures of caffeic acid 

complexes over alumina 

G421, a.u. 

C1 C2 C3 C4 F1 F2 

-1588.771629 -1588.778037 -1588.773954 -1588.774137 -1588.787403 -1588.786720 
 

 

Study of the CA/Al2O3 sample by the TPD 

MS. The pyrolysis of CA occurred in the 

temperature range from 100 to 600 °С and was 

accompanied by the formation of a large number 

of products with m/z from 3 to 178, which can be 

seen in the mass spectra obtained during the 
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TPDMS study of the sample of CA/Al2O3 

(0.6 mmol/g) (Fig. 3). The main products of CA 

decomposition on the Al2O3 surface included:   

4-vinyl catechol (m/z 136, 110−400 °С), catechol 

(m/z 110, Tmax = 123 °С), phenol (m/z 94, 

Tmax = 409 °С and others. In the process of 

pyrolysis, H2O (m/z 18), CO2 (m/z 44), and CO 

(m/z 28) were released intensively. Based on the 

analysis of the obtained TPD MS data (Fig. 3) 

and the results of studies of the thermal 

decomposition of cinnamic acids on the surface 

of ceria [53], certain conclusions can be drawn 

about CA complexes that form on the aluminum 

oxide surface. 

From the results [53, 54, 61], it is clear that 

the destruction of carboxylate complexes of 

cinnamic acids on the CeO2 occurs mainly by 

decarboxylation and the formation of the 

corresponding vinyl phenol (styrene). At the 

same time, it is shown that decarboxylation of 

various types of carboxylate complexes occurs at 

different temperatures. It is known that free 

phenolic acids, particularly caffeic, undergo 

decarboxylation both under the influence of 

temperatures [62] and in the metabolism 

processes of various microorganisms [63]. 

As shown in Figs. 3 and 4, 4-vinyl catechol 

(М.r. = 136 Da, m/z 136) belongs to the main 

decomposition product of CA pyrolysis over 

alumina. Its formation was registered in a wide 

range of temperatures (110−400 °С). Thus, its 

release is probably related to the destruction of 

various types of carboxylate complexes and 

associates of CA, which are formed when the 

CA amount increases on the surface of the oxide, 

whereas catechol (m/z 110) and phenol (m/z 94) 

(Figs. 3, 4) can be products of the destruction of 

complexes formed with the participation of 

phenolic OH groups [53]. The first compound 

may be a product of the decomposition of CA 

molecules bound to the Al2O3 surface through 

one aromatic hydroxyl. Phenol is probably 

released during the destruction of chelate 

complexes formed due to the interaction of both 

phenolic groups of CA with the oxide surface. 

Thus, the registration of these compounds in the 

mass spectra of CA/Al2O3 during heating can be 

a sign of the presence of a number of carboxylate 

and phenolic complexes on the Al2O3 surface, 

which was also revealed by FT-IR spectroscopic 

data. 

 

 
a 

 
b 

Fig. 3. Mass spectra of pyrolysis products of the CA/Al2O3 sample, obtained at temperatures of 194 °С (a) and 

400 °С (b) 
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a b 

Fig. 4. TPD curves of molecular ions of (a) vinyl catechol (m/z 136, curve 1), catechol (m/z 110, curve 2); and (b) 

phenol (m/z 94), obtained during pyrolysis of the CA/Al2O3 sample 

 

At the same time, the high relative release 

intensity of phenol (m/z 94) compared to 

catechol (m/z 110) and vinyl catechol (m/z 136) 

may indicate a significant content of complexes 

that are formed with the participation of both 

phenolic groups. This is consistent with the 

results of the FT-IR spectroscopic study. As 

shown in Fig. 1, the relative intensity of the 

carboxylate bands is relatively low. In addition, 

it is known that caffeic acid, which has o-

substituted hydroxyl groups in its structure, can 

form chelate phenolic complexes with metals 

[60, 64, 65]. 

CONCLUSIONS 

Samples of CA over the alumina surface 

were investigated using FT-IR spectroscopy, 

TPD MS, and quantum chemical methods. From 

the obtained FT-IR spectroscopic data, it was 

found that the interaction of CA with aluminum 

oxide takes place with the participation of both 

carboxyl and phenolic groups. The formation of 

such products as 4-vinyl catechol (М.r. = 136 Da, 

m/z 136), catechol (М.r. = 110 Da, m/z 110) and 

phenol (М.r. = 94 Da, m/z 94), which were 

registered by TPD MS in the study of CA/Al2O3 

samples, was associated with the destruction of a 

number of carboxylate and phenol complexes of 

CA. This can serve as confirmation of the 

presence of these complexes on the Al2O3 

surface. The obtained data indicate that phenolic 

complexes predominate for the studied samples. 
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Кавова кислота є фенольною природною біологічно активною сполукою з вираженими 

антиоксидантними та антимікробними властивостями, яка має великий потенціал застосування в 

медицині і косметології, а також може використовуватися для отримання ряду інших корисних хімікатів.  

Тому дослідження, спрямовані на вдосконалення технологій вилучення кавової кислоти з рослинної сировини,  

а також її переробки, є актуальними. В нашій роботі вивчалися комплекси кавової кислоти з нанорозмірним 

Al2O3, який зазвичай застосовують в різних технологіях конверсії рослинної біомаси. Структуру та тип 

утворених комплексів СА досліджено за допомогою ІЧ-спектроскопії, температурно-програмованої 

десорбційної мас-спектрометрії (ТПД МС) та квантовохімічних методів. Аналіз отриманих ІЧ-спектрів 

свідчить, що СА може взаємодіяти з нанорозмірним оксидом алюмінію як карбоксильною так і фенольними 

групами. На основі розрахованих значень ν встановлено, що карбоксилатні комплекси СА на поверхні Al2O3 

можуть мати бідентатну та монодентатну структури. Аналіз мас-спектрометричних даних дозволив 

ідентифікувати сполуки 4-вінілкатехолу, пірокатехолу та фенолу, які є продуктами розкладу утворених 

карбоксилатних та фенольних комплексів. Виявлено, що на поверхні досліджених зразків СА/Al2O3 

переважають хелатні комплекси СА, які утворюються за участі обох ОН-груп ароматичного кільця. 

Ключові слова: біомаса, карбоксилатні комплекси, хелатні комплекси, 4-вінілкатехол, пірокатехол, 

фенол, піроліз, технології конверсії біомаси 
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