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Caffeic acid (CA) is a phenolic, natural, biologically active compound with pronounced antioxidant and
antimicrobial properties. It has a great potential for use in medicine and cosmetology and can also be used to obtain
a number of other useful chemicals. Therefore, research aimed at improving the technologies for removing caffeic
acid from plant raw materials and its processing is relevant. In our work, we have studied the complexes of caffeic
acid with nanosized Al>Os, which is usually used in various plant biomass conversion technologies, using FT-IR
spectroscopy, temperature-programmed desorption mass spectrometry (TPD MS), and DFT calculations. The FT-IR
spectra analysis shows that CA can interact with aluminum oxide via both the carboxyl and phenolic groups. Based
on the measured differences between carbonyl symmetric and asymmetrc vibrational peaks (4v), it was found that
carboxylate complexes of CA on the Al,Os; surface can have bidentate and monodentate structures. The mass
spectrometric data analysis made it possible to identify compounds of 4-vinyl catechol, pyrocatechol, and phenol,
which are decomposition products of the formed carboxylate and phenolic complexes. It was found that on the
surface of the studied CA/Al,O3; samples, CA chelate complexes, formed with the participation of both OH groups of
the aromatic ring, predominate.

Keywords: biomass, carboxylate complexes, chelate complexes, 4-vinyl catechol, pyrocatechol, phenol,
pyrolysis, biomass conversion technologies

INTRODUCTION

Caffeic acid is a C6-C3 phenolic natural
biologically active compound, which has

production and wines and are obtained in large

guantities. At the same time, this biomass can be

processed into other useful chemicals [22-37].
Aluminum oxide is one of the oxides

pronounced antioxidant, antimicrobial and other
biological activities [1-5], and has great
potential for use in medicine [6, 7]. It is often
found in plants that are used in food, and is
mainly found in them as ester or bound to
biopolymers [8]. CA, both free and esterified, is
usually the most abundant phenolic acid and
accounts for 75 to 100% of the total
hydroxycinnamic acid content in most fruits [9].
It is mainly involved in the synthesis of lignin, as
well as the regulation of cell expansion, turgor
pressure, phototropism, water flow and growth
[10]. At the same time, a significant part of the
biomass, which is the waste of the agro-
industrial complex, can be used to obtain caffeic
acid for use in medicine, cosmetology and other
areas. In particular, the source of CA can be pulp
of apples [12-15], grapes [15-19], tomatoes etc.
[20, 21], which are by-products of juice
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commonly used as a catalyst and carrier,
including in various plant biomass conversion
technologies [38-41]. Therefore, the study of
caffeic acid complexes, which they form when
interacting with aluminum oxide, is significant
for the development and optimization of
CA-obtaining  technologies, as well as
technologies for processing plant raw materials
into various chemicals that involve the use of
aluminum oxide. In particular, data on the type
of complexes formed and their relative amount
on the oxide surface combined with data on their
stability, as well as an understanding of the
mechanisms of the biomass components
transformations under the influence of various
physical factors (irradiation, heating, solvents,
and others) [11, 19, 20, 25, 23, 29, 32, 33], will
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allow determining the possibilities of using
Al;O3 in those or other technologies.

Therefore, our work is devoted to
determining the complexes formed by caffeic
acid with nanosized aluminum oxide using
FT-IR spectroscopy, temperature-programmed
desorption mass spectrometry, and DFT
calculations.

EXPERIMENTAL

The research used caffeic acid (=98 %,
Sigma-Aldrich) and alumina (99.5 %,
Sar=89 m?g, Evonic), which had previously
been calcined at 500 °C for two hours to remove
any organic based impurities.

CA/ALLO; samples (0.3 and 0.6 mmol/g)
were prepared by impregnating 100 mg of
aluminum oxide with 2ml of a solution of
caffeic acid in ethanol (96 %). The resulting
suspensions were mixed and dried in the open air
at room temperature.

IR-spectral studies were performed using a
Fourier transform Thermo Nicolet NEXUS
device in the diffuse reflectance mode. For
research, samples of CA/AI;O; and pure Al;Os
were mixed with KBr in a ratio of 1:10, and pure
CA - in a ratio of 1:100. All samples were
thoroughly ground for the same amount of time.
The spectra were recorded with a resolution of
4 cmt. The scanning speed was 0.5 cm/s, and
the number of scans was 50.

Examination of the samples using the
method of temperature-programmed desorption
mass spectrometry (TPD MS) was performed on
a monopole mass spectrometer MH-7304A
(Sumy, Ukraine) with electron ionization,
converted for conducting thermodesorption
measurements [42]. A sample weighing 10-20 mg
was placed in a quartz-molybdenum ampoule
and pumped at room temperature to a pressure of
~ 5-:107° Pa. The sample was heated at the rate of
0.17 °C/s from room temperature to 750 °C.
Volatile decomposition products entered the
ionization chamber of the mass spectrometer,
where they were ionized and fragmented under
the influence of electrons. The intensities of the
ion currents of the products of desorption and
thermolysis in the mass analyzer were recorded
by a secondary electron multiplier BEU-6. The
range of investigated masses was m/z 1-220.
Registration and analysis of mass spectra were
carried out by an automated computer system.
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Density functional (DFT) calculations were
performed using the wB97XD functional with
Grimme’s D2 dispersion corrections [43] and the
6-311++G(d,p) basis set. Gaussian 09 software
version B0l [44] was used. For the studied
molecular systems, full geometry optimization
was performed. The total charge of the system
was zero. The results of the calculations were
visualized using the molecular graphics program
MaSK v. 1.3.0 [45]. As the simplest model of
aluminum oxide, a cluster of composition
Al;O¢Hs [46] was used.

RESULTS AND DISCUSSION

FT-IR spectroscopic study. To find out
which functional groups of CA are involved in
the interaction with surface of aluminum oxide, a
spectroscopic study of the CA/AIO; sample
(0.3 mmol/g) was carried out by the FT-IR
method (Fig. 1).

For the CA/AILO; sample, the absence of an
absorption maximum at 1645cm™!, which
corresponds to valence vibrations of the carbonyl
group (v(C=0)) [47], was found. This indicates
the formation of carboxylate complexes. The
new broad band at 1630 cm’!, which was
masked by intense absorption of v(C=0) in the
CA spectrum, probably refers to v(C=C)
vibrations. A shoulder appears around 1670 cm™!
for CA/AI;Os, which may correspond to v(C=0).
Whereas the absorption detected in the spectra of
the studied samples in the region of 1394 cm™!
probably corresponds to v(CO) vibrations. It has
been demonstrated that the magnitude of “Av”
the separation between the asymmetric and
symmetric carboxylate stretches (Av=va(COO")-
vs(COO)) or, in case of monodentate
coordination, between the C=0O and C-O
stretches (Av=v(C=0)-v(CO)) can be used to
determine the type of the carboxylate (and non-
dissociated acid) binding [48, 49].

The absorptions at 1670 cm™' v(C=0) and
1394 cm™ v(CO) most likely correspond to
monodentate complexes, since the value of Av is
276 cm™!. The assignment of absorption bands to
mono- and bidentate complexes was previously
made on the example of surface complexes of
valeric acid on the surface of metal oxide
catalysts (SiOz, y-Al,03, Ce0./SiO,, Al,0s/SiO,
and TiO,/SiOy) based on the values of Av [28].
The results of quantum chemical calculations
and IR spectroscopy [50] supported such an
interpretation. According to [50], the absorption
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at ~1680cm™! detected for valeric acid
corresponds to  monodentate  carboxylate
complexes. In addition, the CA/AI,O3 spectra
contain absorptions in the region of 1400 and

symmetric ~ (vs(COO7)) and  asymmetric
(vas(COO7)) valence vibrations of carboxylate
complexes. The structure of these complexes is
bidentate, since Av is 168 cm™'.

1568 cm™!, which apparently correspond to
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Fig. 1.  FT-IR spectra in the regions 1100—1800 cm™' and 2000-3800 cm™': (a) pure Al,Os;, (b) CA/AIOs,

(c) pure CA

Some changes were also detected in the
region of valence vibrations of OH groups
(Fig. 1 b). In particular, the maxima at 3226 and
3440 cm™! are not observed. There is only a
broad band with a maximum of 3421 cm™.
These bands belong to the valence vibrations of
phenolic hydroxyls [47, 48]. The first maximum
may correspond to phenolic groups forming
intermolecular hydrogen bonds in CA associates.
The maximum at 3440 cm™ is in the region
where intermolecular hydrogen bonds in dimers
of CA and intramolecular hydrogen bonds of CA
are manifested [49]. Although the absorption of
hydrogen-bonded OH groups of water, which
may be present in the studied samples, may also
appear here. The absence of a band at 3226 cm™!
indicates the destruction of intermolecular
hydrogen bonds between phenolic groups.

In addition, the part of the spectrum between
1000-1500 cm™!' changes significantly for the
CA/AILLO; sample. Absorptions of COH-groups
for phenolic and carboxyl groups appear here, so
identifying bands in this part of the spectrum is
challenging. The analysis of this area was
performed based on a number of our own FT-IR
spectroscopic studies of phenolic compounds
[53,54] and literature data [47, 55-57].
According to [47,55], a broad intense band
located around 1300 cm™!, which often has
several maxima, is due to the superimposition of
COH vibrations of phenolic and carboxylic OH
groups. For the CA/AIO3; sample (0.3 mmol/g),
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this band undergoes a transformation, in
particular, its maximum shifts from 1282 to
1269 cm™!. The peak at 1298 cm™!, which may
correspond to plane deformation vibrations of
phenolic OH groups [47], practically disappears.
In addition, the 1218 cm™! band, which is also
attributed to COH vibrations [47], in the
CAJ/ALLO; spectrum (0.3 mmol/g) has a much
lower relative intensity than for CA. The bands
at 1327 and 1352 cm™! disappear, which can be
manifested as plane deformation vibrations of
OH groups [52]. Instead, absorption appears at
1338 cm™!'. Such changes may mean that not
only the carboxyl OH group, but also phenolic
groups participate in the interaction with the
oxide. According to a number of literature data
[58-60], the formation of CA complexes with
the participation of phenolic groups can also be
evidenced by the position of the two most
intense bands in the CA/Al;Os; (0.3 mmol/g)
spectrum - near 1269 and 1497 cm™!. At the
same time, the first of them is attributed to the
C-OH valence vibrations of the aromatic
nucleus, and the second to the v(C=C) vibrations
of the benzene ring. This spectrum characteristic
is a sign of chelate complexes forming phenolic
groups of caffeic acid with various oxides
[58-60].

DFT calculations. We calculated the
possible structures of carboxylate complexes of
caffeic acid on the aluminum oxide surface.
Table 1 shows the value of the Gibbs free energy
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at the temperature of 421 K (G421) for the
calculated structures. The structures of CA
complexes with a cluster of composition
Al>,O¢Hs are presented in Fig. 2.

According to the performed calculations,
caffeic acid can form phenolate complexes (F1
and F2) and both monodentate carboxylate
(C1-C3) and bidentate bridge (C4) complexes
over alumina, Fig. 2.

Fig. 2. Possible structures of caffeic acid complexes with alumina (carboxylate complexes: C1, C2, C3, C4 and

phenolate complexes — F1, F2)

Table 1. Gibbs free energy values for the temperature 421K (G421) for the calculated structures of caffeic acid

complexes over alumina

Gao1, a.U.

C1 c2

C4 F1 F2

-1588.771629 -1588.778037

-1588.773954

-1588.774137 -1588.787403 -1588.786720

Study of the CA/AI,O; sample by the TPD
MS. The pyrolysis of CA occurred in the
temperature range from 100 to 600 °C and was

accompanied by the formation of a large number
of products with m/z from 3 to 178, which can be
seen in the mass spectra obtained during the
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TPDMS study of the sample of CAJ/AIOs
(0.6 mmol/g) (Fig. 3). The main products of CA
decomposition on the Al,O; surface included:
4-vinyl catechol (m/z 136, 110—400 °C), catechol
(m/z110, Tmax=123°C), phenol (m/z 94,
Tmax =409 °C and others. In the process of
pyrolysis, H.O (m/z 18), CO; (m/z 44), and CO
(m/z 28) were released intensively. Based on the
analysis of the obtained TPD MS data (Fig. 3)
and the results of studies of the thermal
decomposition of cinnamic acids on the surface
of ceria [53], certain conclusions can be drawn
about CA complexes that form on the aluminum
oxide surface.

From the results [53, 54, 61], it is clear that
the destruction of carboxylate complexes of
cinnamic acids on the CeO; occurs mainly by
decarboxylation and the formation of the
corresponding vinyl phenol (styrene). At the
same time, it is shown that decarboxylation of
various types of carboxylate complexes occurs at
different temperatures. It is known that free
phenolic acids, particularly caffeic, undergo
decarboxylation both under the influence of
temperatures [62] and in the metabolism
processes of various microorganisms [63].

As shown in Figs. 3 and 4, 4-vinyl catechol
(M.r. =136 Da, m/z 136) belongs to the main
decomposition product of CA pyrolysis over
alumina. Its formation was registered in a wide
range of temperatures (110—400 °C). Thus, its
release is probably related to the destruction of
various types of carboxylate complexes and
associates of CA, which are formed when the
CA amount increases on the surface of the oxide,
whereas catechol (m/z 110) and phenol (m/z 94)
(Figs. 3, 4) can be products of the destruction of
complexes formed with the participation of
phenolic OH groups [53]. The first compound
may be a product of the decomposition of CA
molecules bound to the Al.O; surface through
one aromatic hydroxyl. Phenol is probably
released during the destruction of chelate
complexes formed due to the interaction of both
phenolic groups of CA with the oxide surface.
Thus, the registration of these compounds in the
mass spectra of CA/AlLO; during heating can be
a sign of the presence of a number of carboxylate
and phenolic complexes on the Al.O; surface,
which was also revealed by FT-IR spectroscopic
data.
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Fig. 3.
400 °C (b)
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Mass spectra of pyrolysis products of the CA/Al,O3 sample, obtained at temperatures of 194 °C (a) and
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Fig. 4. TPD curves of molecular ions of (a) vinyl catechol (m/z 136, curve 1), catechol (m/z 110, curve 2); and (b)
phenol (m/z 94), obtained during pyrolysis of the CA/AI,O3 sample

At the same time, the high relative release
intensity of phenol (m/z94) compared to
catechol (m/z 110) and vinyl catechol (m/z 136)
may indicate a significant content of complexes
that are formed with the participation of both
phenolic groups. This is consistent with the
results of the FT-IR spectroscopic study. As
shown in Fig. 1, the relative intensity of the
carboxylate bands is relatively low. In addition,
it is known that caffeic acid, which has o-
substituted hydroxyl groups in its structure, can
form chelate phenolic complexes with metals
[60, 64, 65].

CONCLUSIONS

Samples of CA over the alumina surface
were investigated using FT-IR spectroscopy,
TPD MS, and quantum chemical methods. From
the obtained FT-IR spectroscopic data, it was
found that the interaction of CA with aluminum
oxide takes place with the participation of both
carboxyl and phenolic groups. The formation of
such products as 4-vinyl catechol (M.r. =136 Da,
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m/z 136), catechol (M.r. =110 Da, m/z 110) and
phenol (M.r.=94 Da, m/z94), which were
registered by TPD MS in the study of CA/AILOs
samples, was associated with the destruction of a
number of carboxylate and phenol complexes of
CA. This can serve as confirmation of the
presence of these complexes on the Al.Os;
surface. The obtained data indicate that phenolic
complexes predominate for the studied samples.
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Kommiekcu kaBoBOI KHCJI0TH Ha NOBepPXHi okcuay anaroMminio: 1Y cnexrpockomnisi, TTL
MC T1a DFT po3paxyHku
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Tuemumym ximii nogsepxui in. O.0. Yyuxa Hayionanvhoi akademii nayx Yxpainu
eyn. lenepana Haymosa, 17, Kuis, 03164, Vkpaina, nastasienkon@ukr.net
Cardiff Catalysis Institute, Translational Research Hub, School of Chemistry, Cardiff University
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Incmumym monekynaproi 6ionoeii i cenemuxu Hayionanenoi akademii nayk Yrpainu
8yn. Axademixa 3aborommuoeo 150, Kuis, 03143, Vkpaina

Kasosa kucioma € enonvrolo  npupoonolo  60iono2iuHO  AKMUEHOIO  CHONYKOIO 3 BUDAIICEHUMU
AHMUOKCUOAHMHUMY  MA  AHMUMIKDOOHUMU  6IACMUBOCMAMYU, AKA MAE GENUKUI NOMEHYIan 3acmOoCy8aHHs 8
MeOUYUHI i KOCMEmMOoN02ii, @ MAKOIC MOJCe GUKOPUCHOBYBAMUCS OJIsL OMPUMANHS PAOY THUUX KOPUCHUX XIMIKAmMie.
Tomy O0ocniodicenHs, ChPAMOGAH] HA 600CKOHANEHHA MEXHONO2I GUILYYEHHS KAGOGOI KUCIOMU 3 POCIUHHOI CUPOBUHUL,
a maxooxc ii nepepodku, € akmyanvHumu. B nawili pobomi eusuanuca KOMIIEKCU KABOBOT KUCTIOMU 3 HAHOPOIMIDHUM
AlLOs, skui 3a36uyail 3acmMoco8yOmy 6 Pi3HUX MEXHONO02IAX KOHEepcii pocaunnoi 6iomacu. Cmpyxmypy ma mun
ymeopenux romniaekcie CA Oocniddceno 3a oOonomoeoro [H-cnekmpockonii, memnepamypHo-npocpamosanoi
Odecopoyitinoi mac-cnekmpomempii (TII MC) ma xeanmogoximiunux memoois. Auaniz ompumanux 149-cnexmpis
csiouums, ugo CA modwce 83a€mM00ismu 3 HAHOPOIMIPHUM OKCUOOM ATIOMIHIIO AK KaApOOKCUNbHOI MAK i (heHOTbHUMU
epynamu. Ha ocnogi pospaxosanux snavens Av ecmanosneno, wjo kapooxcunamui komnaexcu CA na nosepxmi Al,0s3
ModiIcymy mamu 6i0enmamuy ma MOHOOEHMAMHY CHMPYKmypu. AHANI3 Mac-CHReKMpOMempUIHUX OaHux 003601U8
ioenmugixyeamu cnonyku 4-gininkamexony, nipokamexouny ma ¢heHony, sKi € npoOyKmami po3KIady YmMeopeHUx
Kapbokcunamuux ma ¢eHonvHux Komniexcie. Buseneno, wo Ha nogepxmi oocniodcenux 3spasxie CA/AlO3
nepesaxcaioms xenamui komniexcu CA, axi ymsopioromucs 3a yuacmi obox OH-gpyn apomamuunozo Kinbys.

Knwwuosi cnoea:. 6biomaca, kapOOKCUNAMHI KOMWIEKCU, XENIAMHI KOMMIEKCU, 4-8IHIIKAmMexoa, nipoKamexoi,
¢enon, niponiz, mexnonoeii konsepcii Giomacu
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