An influence of the adsorbed molecules layer on the localized surface plasmons in the spherical metallic nanoparticles
DOI: https://doi.org/10.15407/hftp13.04.476
Abstract
An influence of the adsorbed molecules layer on the optical characteristics of the spherical metallic nanoparticles has been studied in the work. In order to do this one considers the additional term which takes into account the scattering of electrons at the interface between metal and adsorbate. The analytical expressions for the frequency dependences for the parameter of coherence loss due to the scattering at the interface “metal – adsorbed layer” have been obtained. It has been found that the presence of the adsorbed molecules results in the electron scattering anisotropy, and, hence, in the anisotropy of the optic response of such systems. The result of the indicated anisotropy is the appearance of the additional maximum in the infrared part of the spectrum in the frequency dependences for the optical characteristics. An evolution of the frequency dependences for the components of the polarizability tensor and the absorption cross-section and scattering cross-section for the two-layer spherical nanoparticles of the type “metal – adsorbate” under the variation of their geometrical parameters has been analyzed. It has been shown that the weak maximum of the real, imaginary parts and the module of the transverse component of the polarizability tensor and the absorption and scattering cross-sections in the infrared part of the spectrum appears due to inducing of the local density of the states by adsorbate. The reason of the shift of the maxima of the absorption cross-section and scattering cross-section for the nanoparticles of the constant sizes with the cores of different metals has been found. It has been demonstrated the existence of the small-scale oscillations at the frequency dependences for the components of the polarizability tensor and at the absorption and scattering cross-sections, caused by an oscillating contribution of the surface electron scattering. The dependence of the location and the value of the maximum of the absorption cross-section for the particle “metal – adsorbate” with the constant geometrical parameters and content on the dielectric permittivity of the medium, in which the nanoparticle is situated, has been proved.
Keywords
References
Valsecchi C., Brolo A.G. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir. 2013. 29(19): 5638. https://doi.org/10.1021/la400085r
Schatz G.C., Van Duyne R.P. Electromagnetic mechanism of surface-enhanced spectroscopy. In: Handbook of Vibrational Spectroscopy. (John Wiley & Sons, Ltd., 2006). https://doi.org/10.1002/0470027320.s0601
Moskovits M. Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 2005. 36(6-7): 485. https://doi.org/10.1002/jrs.1362
Barnes W.L., Dereux A., Ebbesen T.W. Surface plasmon subwavelength optics. Nature. 2003. 424(6950): 824830. https://doi.org/10.1038/nature01937
Noginov M.A., Zhu G., Belgrave A.M., Bakker R., Shalaev V.M., Narimanov E.E., Stout S., Herz E., Suteewong T., Wiesner U. Demonstration of a spaser-based nanolaser. Nature. 2009. 460(7259): 1110. https://doi.org/10.1038/nature08318
Knight M.W., Sobhani H., Nordlander P., Halas N.J. Photodetection with active optical antennas. Science. 2011. 332(6030): 702. https://doi.org/10.1126/science.1203056
Kakavelakis G., Vangelidis I., Heuer-Jungemann A., Kanaras A.G., Lidorikis E., Stratakis E., Kymakis E. Plasmonic Backscattering Effect in High-Efficient Organic Photovoltaic Devices. Adv. Energy Mater. 2016. 6(2): 1501640. https://doi.org/10.1002/aenm.201501640
Foerster B., Joplin A., Kaefer K., Celiksoy S., Link S., Sönnichsen C. Chemical Interface Damping Depends on Electrons Reaching the Surface. ACS Nano. 2017. 11(3): 2886. https://doi.org/10.1021/acsnano.6b08010
Collins S.S., Wei X., McKenzie T.G., Funston A.M., Mulvaney P. Single Gold Nanorod Charge Modulation in an Ion Gel Device. Nano Lett. 2016. 16(11): 6863. https://doi.org/10.1021/acs.nanolett.6b02696
Byers C.P., Hoener B.S., Chang W.S., Link S., Landes C.F. Single-Particle Plasmon Voltammetry (Sppv) for Detecting Anion Adsorption. Nano Lett. 2016. 16(4): 2314. https://doi.org/10.1021/acs.nanolett.5b04990
Christopher P., Xin H., Linic S. Visible-Light-Enhanced Catalytic Oxidation Reactions on Plasmonic Silver Nanostructures. Nat. Chem. 2011. 3: 467. https://doi.org/10.1038/nchem.1032
Mubeen S., Lee J., Singh N., Krämer S., Stucky G.D., Moskovits M. An Autonomous Photosynthetic Device in which All Charge Carriers Derive from Surface Plasmons. Nat. Nanotechnol. 2013. 8: 247. https://doi.org/10.1038/nnano.2013.18
Naik G.V., Dionne J.A. Photon Upconversion with Hot Carriers in Plasmonic Systems. Appl. Phys. Lett. 2015. 107(13): 133902. https://doi.org/10.1063/1.4932127
Mitsudome T., Kaneda K. Gold Nanoparticle Catalysts for Selective Hydrogenations. Green Chem. 2013. 15(10): 2636. https://doi.org/10.1039/c3gc41360h
Brongersma M.L., Halas N.J., Nordlander P. Plasmon-Induced Hot Carrier Science and Technology. Nat. Nanotechnol. 2015. 10: 25. https://doi.org/10.1038/nnano.2014.311
Wu K., Chen J., Mcbride J.R., Lian T. Efficient Hot-Electron transfer by a Plasmon-Induced Interfacial Charge-Transfer Transition. Science. 2015. 349(6248): 632. https://doi.org/10.1126/science.aac5443
Hartland G.V. Optical Studies of Dynamics in Noble Metal Nanostructures. Chem. Rev. 2011. 111(6): 3858. https://doi.org/10.1021/cr1002547
Hoggard A., Wang L.-Y., Ma L., Fang Y., You G., Olson J., Liu Z., Chang W.-S., Ajayan P.M., Link S. Using the Plasmon Linewidth To Calculate the Time and Efficiency of Electron Transfer between Gold Nanorods and Graphene. ACS Nano. 2013. 7(12): 11209. https://doi.org/10.1021/nn404985h
Olson J., Dominguez-Medina S., Hoggard A., Wang L.-Y., Chang W.-S., Link S. Optical Characterization of Single Plasmonic Nanoparticles. Chem. Soc. Rev. 2015. 44(1): 40. https://doi.org/10.1039/C4CS00131A
Munechika K., Smith J.M., Chen Y., Ginger D.S. Plasmon Line Widths of Single Silver Nanoprisms as a Function of Particle Size and Plasmon Peak Position. J. Phys. Chem. C. 2007. 111(51): 18906. https://doi.org/10.1021/jp076099e
Kreibig U., Michael V. Optical Properties of Metal Clusters. (Berlin: Springer, 1995). https://doi.org/10.1007/978-3-662-09109-8
Charle K.-P., Frank F., Schulze W. The Optical Properties of Silver Microcrystallites in Dependence on Size and the Influence of the Matrix Environment. Berichte der Bunsengesellschaft für physikalische Chemie. 1984. 88(4): 350. https://doi.org/10.1002/bbpc.19840880407
Lohse S.E., Murphy C.J. The Quest for Shape Control: A History of Gold Nanorod Synthesis. Chem. Mater. 2013. 25(8): 1250. https://doi.org/10.1021/cm303708p
Klar T., Perner M., Grosse S., Von Plessen G., Spirkl W., Feldmann J. Surface-Plasmon Resonances in Single Metallic Nanoparticles. Phys. Rev. Lett. 1998. 80(19): 4249. https://doi.org/10.1103/PhysRevLett.80.4249
Hövel H., Fritz S., Hilger A., Kreibig U., Vollmer M. Width of Cluster Plasmon Resonances: Bulk Dielectric Functions and Chemical Interface Damping. Phys. Rev. B. 1993. 48(24): 18178. https://doi.org/10.1103/PhysRevB.48.18178
Kusar P., Gruber C., Hohenau A., Krenn J.R. Measurement and Reduction of Damping in Plasmonic Nanowires. Nano Lett. 2012. 12(2): 661. https://doi.org/10.1021/nl203452d
Persson J. Polarizability of Small Spherical Metal Particles: Influence of the Matrix Environment. Surf. Sci. 1993. 281(1−2): 153. https://doi.org/10.1016/0039-6028(93)90865-H
Korotun A.V., Koval' A.A., Reva V.I., Titov I.N. Optical Absorption of a Composite Based on Bimetallic Nanoparticles. Classical Approach. Phys. Met. Metall. 2019. 120(11): 1040. https://doi.org/10.1134/S0031918X19090059
Korotun A.V., Koval A.O., Pogosov V.V. Optical parameters of bimetallic nanospheres. Ukr. J. Phys. 2021. 66(6): 518. https://doi.org/10.15407/ujpe66.6.518
Korotun A.V., Koval' A.A., Reva V.I. Absorption of Electromagnetic Radiation by Oxide-Coated Spherical Metal Nanoparticles. J. Appl. Spectrosc. 2019. 86(4): 606. https://doi.org/10.1007/s10812-019-00866-6
Korotun A.V., Koval' A.A. Optical Properties of Spherical Metal Nanoparticles Coated with an Oxide Layer. Opt. Spectrosc. 2019. 127(6): 1161. https://doi.org/10.1134/S0030400X19120117
Korotun A.V., Koval' A.A., Titov I.N. Optical Absorption of a Composite Based on Bilayer Metal-Dielectric Spherical Nanoparticles. J. Appl. Spectrosc. 2020. 87(2): 240. https://doi.org/10.1007/s10812-020-00991-7
Grigorchuk N.I., Tomchuk P.M. Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect. Phys. Rev. B. 2011. 84(8): 085448. https://doi.org/10.1103/PhysRevB.84.085448
Korotun A.V., Pavlyshche N.I. Cross Sections for Absorption and Scattering of Electromagnetic Radiation by Ensembles of Metal Nanoparticles of Different Shapes. Phys. Met. Metall. 2021. 122(10): 941. https://doi.org/10.1134/S0031918X21100057
Pinchuk A., von Plessen G., Kreibig U. Influence of interband electronic transitions on the optical absorption in metallic nanoparticles. J. Phys. D: Appl. Phys. 2004. 37(22): 3133. https://doi.org/10.1088/0022-3727/37/22/012
Peng S., McMahon J.M., Schatz G.C., Gray S.K., Sun Y. Reversing the size-dependence of surface plasmon resonances. Proc. Natl. Acad. Sci. USA. 2010. 107(33): 14530. https://doi.org/10.1073/pnas.1007524107
DOI: https://doi.org/10.15407/hftp13.04.476
Copyright (©) 2022 N. A. Smirnova, A. V. Korotun, L. M. Titov
This work is licensed under a Creative Commons Attribution 4.0 International License.