Chemistry, Physics and Technology of Surface, 2024, 15 (3), 361-377.

Increase in efficiency of chemotherapeutic drugs: physico-chemical factor



DOI: https://doi.org/10.15407/hftp15.03.361

S. P. Turanska, T. V. Krupska, V. V. Turov, P. P. Gorbyk

Abstract


With the development of nanotechnology, new scientific directions have been initiated and a significant amount of researches has been carried out, dedicated to the creation and search for promising applications in medicine, in particular, oncology, of nanocomposites based on bioinert, biocompatible and bioactive nanoparticle materials and modern chemotherapeutic drugs with different mechanisms of action. These works contain data indicating the advantages to introduce nanocomposite drugs into clinical practice, compared to the traditional use of chemotherapeutic drugs. The research results confirm the priority of works in the field of creation of new nanocomposite chemotherapeutic drugs for use in antitumor therapy and overcoming of drug resistance of malignant cells and neoplasms.

The purpose of the review is to generalize and analyze the authors’ experimental works performed at Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, concerning the specifics of the effect of chemotherapeutic drugs with different mechanisms of action and related nanocomposites, on cellular systems and tumors. Such data are relevant to determine promising directions and ways of creation of new effective nanocomposite drugs for use, in particular, in antitumor chemotherapy.

At Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, using the chemical engineering method, magnetically sensitive core-shell nanocomposites were synthesized with a multi-level hierarchical nanoarchitecture capable of performing a complex of diagnostic and therapeutic functions with various mechanisms of action, characteristic of medico-biological nanorobots. Their use makes it possible to implement the principle of targeted delivery of antitumor drugs, to carry out real-time local therapy by various methods and MRI diagnosis of the disease, to realize the synergy of treatment with antitumor drugs of different mechanisms of action, to reduce the toxic side effects of oncological drugs on the body. The combination of the above features of nanocomposites, as well as their role in overcoming the drug resistance of cells of malignant neoplasms to cisplatin, testify to the perspective of creation and research of nanocomposite drugs in solving the problem of increase in the efficiency of chemotherapy.


Keywords


malignant cells and tumors; chemotherapeutic drugs; nanocomposites; resistance; efficiency

Full Text:

PDF

References


1. Ishikawa T., Wright C.D., Ishizuka H. GS-X pump is functionally overexpressed in cis-diamminedichloroplatinum(II)-resistant human leukemia HL-60 cells and down-regulated by cell differentiation. J. Biol. Chem. 1994. 269(46): 29085. https://doi.org/10.1016/S0021-9258(19)62016-8

2. Siddik Z.H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003. 22: 7265. https://doi.org/10.1038/sj.onc.1206933

3. Yang P., Ebbert J.O., Sun Z., Weinshilboum R.M. Role of the glutathione metabolic pathway in lung cancer treatment and prognosis: A review. J. Clin. Oncol. 2006. 24(11): 1761. https://doi.org/10.1200/JCO.2005.02.7110

4. Stewart D.J. Mechanisms of resistance to cisplatin and carboplatin. Crit. Rev. Oncol. Hematol. 2007. 63(1):12. https://doi.org/10.1016/j.critrevonc.2007.02.001

5. Chekhun V.F., Lukyanova N.Yu., Burlaka A.P., Bezdenezhnykh N.A., Shpyleva S.I., Tryndyak V.P., Beland F.A., Pogribny I.P. Iron metabolism disturbances in the MCF-7 human breast cancer cells with acquired resistance to doxorubicin and cisplatin. Int. J. Oncol. 2013. 43: 1481. https://doi.org/10.3892/ijo.2013.2063

6. Shevchenko A.I., Kolesnik A.P., Kadzhoian A.V., Kuzmenko V.A. Chemoresistance factors in non-small cell lung cancer. Pathologia. 2016. 1(36): 4. [in Russian]. https://doi.org/10.14739/2310-1237.2016.1.71945

7. Zhou J., Kang Y., Chen L., Wang H., Liu J., Zeng S., Yu L. The drug-resistance mechanisms of five platinum-based antitumor agents. Front. Pharmacol. 2020. 11(343): 1. https://doi.org/10.3389/fphar.2020.00343

8. Turanska S.P., Krupska T.V., Turov V.V., Gorbyk P.P. Peculiarities of interaction of malignant cells and tumors with chemotherapeutic nanocomposite remedies. 2023. Surface. 15(30): 225. [in Ukrainian]. https://doi.org/10.15407/Surface.2023.15.225

9. Prylutska S., Politenkova S., Afanasieva K., Korolovych V., Bogutska K., Sivolob A., Skivka L., Evstigneev M., Kostjukov V., Prylutskyy Y., Ritter U. A nanocomplex of C60 fullerene with cisplatin: design, characterization and toxicity. Beilstein. J. Nanotechnol. 2017. 8: 1494.  https://doi.org/10.3762/bjnano.8.149

10. Grebinyk A., Prylutska S., Buchelnikov A., Tverdokhleb N., Grebinyk S., Evstigneev M., Matyshevska O., Cherepanov V., Prylutskyy Y., Yashchuk V., Naumovets A., Ritter U., Dandekar T., Frohme M. C60 fullerene as an effective nanoplatform of alkaloid berberine delivery into leukemic cells. Pharmaceutics. 2019. 11(11): 586. https://doi.org/10.3390/pharmaceutics11110586

11. Grebinyk A., Prylutska S., Grebinyk S., Prylutskyy Y., Ritter U., Matyshevska O., Dandekar T., Frohme M. Complexation with C60 fullerene increases doxorubicin efficiency against leukemic cells in vitro. Nanoscale Res. Lett. 2019. 14: 61. https://doi.org/10.1186/s11671-019-2894-1

12. Grebinyk A., Prylutska S., Grebinyk S., Ponomarenko S., Virych P., Chumachenko V., Kutsevol N., Prylutskyy Y., Ritter U., Frohme M. Drug delivery with a pH-sensitive star-like dextran-graft polyacrylamide copolymer. Nanoscale Adv. 2022. 4: 5077. https://doi.org/10.1039/D2NA00353H

13. Petranovska A.L., Abramov N.V., Turanska S.P., Gorbyk P.P., Kaminskiy A.N., Kusyak N.V. Adsorption of cis-dichlorodiammineplatinum by nanostructures based on single-domain magnetite. J. Nanostruct. Chem. 2015. 5(3): 275. https://doi.org/10.1007/s40097-015-0159-9

14. Abramov M.V., Petranovska A.L., Kusyak N.V., Kusyak A.P., Korniichuk N.M., Turanska S.P., Gorbyk P.P., Luk'yanova N.Yu., Chekhun V.F. Synthesis and properties of magnetosensitive nanocomposites and ferrofluids based on magnetite, gemcitabine and HER2 antibody. Funct. Mater. 2020. 27(2): 283.

15. Pylypchuk I.V., Abramov M.V., Petranovska A.L., Turanska S.P., Budnyak T.M., Kusyak N.V., Gorbyk P.P. Multifunctional magnetic nanocomposites on the base of magnetite and hydroxyapatite for oncology applications. In: International Conference on Nanotechnology and Nanomaterials (Springer, 2018). P. 35. https://doi.org/10.1007/978-3-319-92567-7_2

16. Abramov M.V., Petranovska A.L., Pylypchuk I.V., Turanska S.P., Opanashchuk N.M., Kusyak N.V., Gorobets' S.V., Gorbyk P.P. Magnetosensitive polyfunctional nanocomposites based on magnetite and hydroxyapatite for application in oncology. Surface. 2018. 10(25): 245. [in Ukrainian]. https://doi.org/10.15407/Surface.2018.10.245

17. Abramov M.V., Kusyak A.P., Kaminskiy O.M., Turanska S.P., Petranovska A.L., Kusyak N.V., Gorbyk P.P. Magnetosensitive nanocomposites based on cisplatin and doxorubicin for application in oncology. In: Horizons in World Physics. Chapter 1. 2017. 293: 1.

18. Kusyak A.P., Petranovska A.L., Turanska S.P., Oranska O.I., Shuba Ya.M., Kravchuk D.I., Kravchuk L.I., Chornyi V.S., Bur'yanov O.A., Sobolevs'kyy Yu.L., Dubok V.A., Gorbyk P.P. Synthesis and properties of nanostructures based on lanthanum fluoride for photodynamic therapy of tumors of the cranial cavity and bone tissue. Him. Fiz. Tehnol. Poverhni. 2021. 12(3): 216. https://doi.org/10.15407/hftp12.03.216

19. Shpak A.P., Gorbyk P.P. Physics and Chemistry of Nanomaterials and Supramolecular Structures. Band 1. (Kyiv: Naukova Dumka, 2007). [in Russian].

20. Shpak A.P., Gorbyk P.P. Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications. (Netherlands: Springer, 2009). https://doi.org/10.1007/978-90-481-2309-4

21. Gorbyk P.P., Turov V.V. Nanomaterials and Nanocomposites in Medicine, Biology, Ecology. (Kyiv: Naukova Dumka, 2011). [in Russian].

22. Patent UA 99211. Gorbyk P.P., Petranovska A.L., Turelyk M.P., Turanska S.P., Vasylieva O.A., Chekhun V.F., Luk'yanova N.Yu., Shpak A.P., Korduban O.M. Nanocapsule with nanorobot functions. 2012.

23. Gorbyk P.P., Chekhun V.F. Nanocomposites of medicobiologic destination: reality and perspectives for oncology. Funct. Mater. 2012. 19(2): 145.

24. Gorbyk P.P. Nanocomposites with functions of medico-biological nanorobots: synthesis, properties, application. Nanosystems, Nanomaterials, Nanotechnologies. 2013. 11(2): 323. [in Ukrainian].

25. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P. Magnetosensitive nanocomposites with functions of medico-biological nanorobots: synthesis and properties. In: Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications. (NY: Nova Science Publishers, 2014).

26. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P., Pylypchuk I.V. Magnetosensitive nanocomposites with hierarchical nanoarchitecture as biomedical nanorobots: synthesis, properties, and application. In: Fabrication and Self-Assembly of Nanobiomaterials, Applications of Nanobiomaterials. (Elsevier, 2016). https://doi.org/10.1016/B978-0-323-41533-0.00010-6

27. Uvarova I.V., Gorbyk P.P., Gorobets' S.V., Ivashchenko O.A., Ulianchych N.V. Nanomaterials of Medical Destination. (Kyiv: Naukova Dumka, 2014). [in Ukrainian].

28. Gorobets' S.V., Gorobets' O.Yu., Gorbyk P.P., Uvarova I.V. Functional Bio- and Nanomaterials of Medical Destination. (Kyiv: Kondor, 2018). [in Ukrainian].

29. Gorbyk P.P. Medico-biological nanocomposites with nanorobot functions: state of investigation, development and prospects of practical introduction. Him. Fiz. Tehnol. Poverhni. 2020. 11(1): 128. [in Ukrainian]. https://doi.org/10.15407/hftp11.01.128

30. Kusyak A.P., Kusyak N.V., Oranska O.I., Kulyk T.V., Dzubenko L.S., Palianytsia B.B., Dudarko O.A., Korniichuk N.M., Petranovska A.L., Gorbyk P.P. Magnetosensitive nanocomposite Fe3O4/Al2O3/C: Synthesis and properties. Nanosystems, Nanomaterials, Nanotechnologies. 2023. 21(2): 427.

31. Kusyak N.V., Kusyak A.P., Dudarko O.A., Korniichuk N.M., Petranovska A.L., Gorbyk P.P. Adsorption of doxorubicin on the surface of magnetically sensitive nanocomposite Fe3O4/Al2O3/C. Mol. Cryst. Liq. Cryst. 2023. 751(1): 10. https://doi.org/10.1080/15421406.2022.2073525

32. Abramov M.V., Turanska S.P., Gorbyk P.P. Magnetic properties of superparamagnetic core-shell type nanocomposites. Metallofiz. Noveishie Tekhnol. 2018. 40(4): 423. [in Ukrainian]. https://doi.org/10.15407/mfint.40.04.0423

33. Abramov M.V., Turanska S.P., Gorbyk P.P. Magnetic properties of fluids based on polyfunctional nanocomposites of superparamagnetic core-multilevel shell type. Metallofiz. Noveishie Tekhnol. 2018. 40(10): 1283. [in Ukrainian]. https://doi.org/10.15407/mfint.40.10.1283

34. Abramov M.V., Turanska S.P., Gorbyk P.P. Specific surface area optimization of nanoarchitecture of magnetosensitive nanocomposites of superparamagnetic core-multilevel shell type for application in oncology. Nanosystems, Nanomaterials, Nanotechnologies. 2020. 18(3): 505. [in Ukrainian]. https://doi.org/10.15407/nnn.18.03.505

35. Patent UA 112490. Chekhun V.F., Luk'yanova N.Yu., Gorbyk P.P., Todor I.M., Petranovska A.L., Boshyts'ka N.V., Bozhko I.V. Antitumor ferromagnetic nanocomposite. 2016.

36. Kusyak A.P., Petranovska A.L., Turanska S.P., Oranska O.I., Shuba Ya.M., Kravchuk D.I., Kravchuk L.I., Chornyi V.S., Bur'yanov O.A., Sobolevs'kyy Yu.L., Dubok V.A., Gorbyk P.P. Synthesis and properties of nanostructures based on lanthanum fluoride for photodynamic therapy of tumors of the cranial cavity and bone tissue. Him. Fiz. Tehnol. Poverhni. 2021. 12(3): 216. https://doi.org/10.15407/hftp12.03.216

37. Kusyak A.P., Petranovska A.L., Turanska S.P., Oranska O.I., Shuba Ya.M., Kravchuk D.I., Kravchuk L.I., Nazarenko V.G., Kravchuk R.M., Chornyi V.S., Bur'yanov O.A., Sobolevs'kyy Yu.L., Dubok V.A., Gorbyk P.P. Synthesis and properties of X-ray luminescent nano-disperse lanthanum phosphate activated with terbium. Him. Fiz. Tehnol. Poverhni.. 2022. 13(4): 425. https://doi.org/10.15407/hftp13.04.425

38. Kravchuk D.I., Sotkis G.V., Shcherbatiuk M.M., Kravchuk R.M., Nazarenko V.G., Gorbyk P.P., Shuba Y.M. Induction of A549 nonsmall-cell lung cancer cells proliferation by photoreleased nicotine. Photochem. Photobiol. 2023. 99(1): 78. https://doi.org/10.1111/php.13652

39. Kusyak A., Petranovska A., Oranska O., Turanska S., Shuba Ya., Kravchuk D., Kravchuk L., Sotkis G., Nazarenko V., Kravchuk R., Dubok V., Bur'yanov O., Chornyi V., Sobolevs'kyy Yu., Gorbyk P. Synthesis and properties of nanodispersed luminescent structures based on lanthanum fluoride and phosphate for optopharmacology and photodynamic therapy of tumor diseases localized in cranial organs and bone tissues. Chapter 3. In: What to Know about Lanthanum. (Nova Science Publishers, Inc., 2023).

40. Kusyak A.P., Petranovska A.L., Dubok V.A., Chornyi V.S., Bur'yanov O.A., Korniichuk N.M., Gorbyk P.P. Adsorption immobilization of chemotherapeutic drug cisplatin on the surface of sol-gel bioglass 60S. Funct. Mater. 2021. 28(1): 97.

41. Kusyak A.P., Oranska O.I., Marcin Behunova D., Petranovska A.L., Chornyi V.S., Bur'yanov O.A., Dubok V.A., Gorbyk P.P. XRD, EDX and FTIR study of the bioactivity of 60S glass doped with La and Y under in vitro conditions. Him. Fiz. Tehnol. Poverhni. 2023. 14(1): 93. https://doi.org/10.15407/hftp14.01.093

42. Kusyak A., Poniatovskyi V., Oranska O., Marcin Behunova D., Melnyk I., Dubok V., Chornyi V., Bur'yanov O., Gorbyk P. Nanostructured sol-gel bioactive glass 60S: In vitro study of bioactivity and antibacterial properties in combination with vancomycin. J. Non-Cryst. Solids X. 2023. 20: 100200. https://doi.org/10.1016/j.nocx.2023.100200

Hallakher D. A new discovery in the field of antibiotics is called revolutionary. BBC NEWS Ukraine. 2015, January 10. [in Ukrainian]. https://www.bbc.com/ukrainian/health/2015/01/150110_new_antibyotics_or

43. Gun'ko V.M., Turov V.V., Gorbyk P.P. Water at Interface. (Kyiv: Naukova Dumka, 2008). [in Russian].

44. Doxorubicin hydrochloride. European Pharmacopoeia. Sixth Edition, 2005.

45. Turanska S.P., Kusyak A.P., Petranovska A.L., Gorobets' S.V., Turov V.V., Gorbyk P.P. Cytotoxic activity of magnetocarried nanocomposites based on doxorubicin with the example of Saccharomyces cerevisiae cells. Him. Fiz. Tehnol. Poverhni. 2016. 7(2): 236. [in Ukrainian]. https://doi.org/10.15407/hftp07.02.236

46. Abramov N.V., Turanska S.P., Kusyak A.P., Petranovska A.L., Gorbyk P.P. Synthesis and properties of magnetite/hydroxyapatite/doxorubicin nanocomposites and magnetic fluids based on them. J. Nanostruct. Chem. 2016. 6: 223. https://doi.org/10.1007/s40097-016-0196-z

47. Kievit F.M., Wang F.Y., Fang C., Mok H., Wang K., Silber J.R., Ellenbogen R.G., Zhang M. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J. Control. Release. 2011. 152(1): 76. https://doi.org/10.1016/j.jconrel.2011.01.024

48. Chekhun V.F., Lukianova N.Yu., Todor I.M., Storchai D.M., Borikun T.V., Naleskina L.A., Kusiak A.P., Petranovska A.L., Horbyk P.P. Pharmacokinetics and biological effects of ferromagnetic nanocomposite in rats with sensitive and Ddp-resistant Guerin's carcinoma. Toxicology and Applied Pharmacology Insights. 2018. 1(1): 1.

49. Certificate TTR 58159. Gorbyk P.P., Abramov M.V., Petranovska A.L., Pylypchuk I.V., Vasylieva O.A. Temporary technological regulations for production of magnetic fluid. 2015. [in Ukrainian].

50. Certificate TTR U 20.5-03291669-002:2018. Gorbyk P.P., Petranovska A.L., Abramov M.V. Temporary technological regulations for production of magnetic fluid containing cisplatin. 2018. [in Ukrainian].

51. Chekhun V.F., Lukyanova N.Yu., Burlaka A.P., Bezdenezhnykh N.A., Shpyleva S.I., Tryndyak V.P., Beland F.A., Pogribny I.P. Iron metabolism disturbances in the MCF-7 human breast cancer cells with acquired resistance to doxorubicin and cisplatin. Int. J. Oncol. 2013. 43: 1481. https://doi.org/10.3892/ijo.2013.2063

52. Lukyanova N.Yu. Experimental basis for use of ferromagnetic nanocomposite in overcoming of tumor cells resistance to cisplatin. Doctoral (Biol.) Thesis. 14.01.07 / R.E. Kavetsky IEPOR of NAS of Ukraine. (Kyiv, 2015). [in Ukrainian].

53. Plentz R.R., Malek N.P. Systemic therapy of cholangiocarcinoma. Visceral Medicine. 2016. 32(6): 427. https://doi.org/10.1159/000453084

54. Jain A., Kwong L.N., Javle M. Genomic profiling of biliary tract cancers and implications for clinical practice. Current Treatment Options in Oncology. 2016. 17(11): 58. https://doi.org/10.1007/s11864-016-0432-2

55. Arias J.L., Reddy L.H., Couvreur P. Fe3O4 / chitosan nanocomposite for magnetic drug targeting to cancer. J. Mater. Chem. 2012. 22: 7622. https://doi.org/10.1039/c2jm15339d

56. Popescu R.C., Andronescu E., Vasile B.S., Trusca R., Boldeiu A., Mogoanta L., Mogosanu G.D., Temelie M., Radu M., Grumezescu A.M., Savu D. Fabrication and cytotoxicity of gemcitabine-functionalized magnetite nanoparticles. Molecules. 2017. 22(7): 1080. https://doi.org/10.3390/molecules22071080

57. Iglesias G.R., Reyes-Ortega F., Fernandez B.L.C., Delgado Á.V. Hyperthermia-triggered gemcitabine release from polymer-coated magnetite nanoparticles. Polymers. 2018. 10(3): 269. https://doi.org/10.3390/polym10030269

58. Tan M., Yu D. Molecular mechanisms of erbB2-mediated breast cancer chemoresistance. Adv. Exp. Med. Biol. 2007. 608: 119. https://doi.org/10.1007/978-0-387-74039-3_9

59. Santin A.D., Bellone S., Roman J.J., McKenney J.K., Pecorelli S. Trastuzumab treatment in patients with advanced or recurrent endometrial carcinoma overexpressing HER2/neu. Int. J. Gynaecol. Obstet. 2008. 102(2): 128. https://doi.org/10.1016/j.ijgo.2008.04.008

60. Petranovska A.L., Abramov M.V., Opanashchuk N.M., Turanska S.P., Gorbyk P.P., Kusyak N.V., Kusyak A.P., Lukyanova N.Yu., Chekhun V.F. Magnetically sensitive nanocomposites and magnetic liquids based on magnetite, gemcitabine and antibody HER2. Him. Fiz. Tehnol. Poverhni.. 2019. 10(4): 419. https://doi.org/10.15407/hftp10.04.419

61. Turanska S.P., Opanashchuk N.M., Petranovska A.L., Kusyak N.V., Tarasiuk B.I., Gorobets' S.V., Turov V.V., Gorbyk P.P., Abramov M.V. Synthesis, properties and application of nanocomposites based on gemcitabine in cancer therapy. Surface. 2019. 11(26): 577. [in Ukrainian]. https://doi.org/10.15407/Surface.2019.11.577

62. Gorbyk P.P., Petranovska A.L., Dmytrenko O.P., Pavlenko O.L., Pundyk I.P., Busko T.O., Pinchuk-Rugal T.M., Lesiuk A.I., Goncharenko N.A., Honcharova O.O., Denis L.V., Strelchuk V.V., Kulish M.P. Adsorption mechanisms of gemcitabine molecules on the surface of Fe3O4 nanoparticles with biocompatible coatings. In: Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications. Springer Proceedings in Physics. 2020. 247: 195. https://doi.org/10.1007/978-3-030-52268-1_15

63. Korniichuk N.M., Turanska S.P., Petranovska A.L., Abramov M.V., Gorbyk P.P., Luk'yanova N.Yu., Kusyak N.V., Chekhun V.F. Magnetically sensitive nanocomposites for targeted antitumor therapy with application of gemcitabine. Him. Fiz. Tehnol. Poverhni. 2020. 11(4): 528. https://doi.org/10.15407/hftp11.04.528




DOI: https://doi.org/10.15407/hftp15.03.361

Copyright (©) 2024 S. P. Turanska, T. V. Krupska, V. V. Turov, P. P. Gorbyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.