Хімія, фізика та технологія поверхні, 2016, 7 (4), 405-412.

Вивчення кінетики та рівноважної адсорбції доксорубіцину на поверхні кремнезему типу МСМ-41



DOI: https://doi.org/10.15407/hftp07.04.405

N. V. Roik, L. A. Belyakova, M. O. Dziazko

Анотація


Адсорбцію протипухлинної лікарської сполуки (доксорубіцину) наночастинками мезопористого кремнезему типу МСМ-41 було вивчено в залежності від тривалості контакту, рН фосфатного буферного розчину та концентрації доксорубіцину. Експериментальні кінетичні криві адсорбції були порівняні з теоретичними моделями Лагергрена та Хо-Маккея для процесів псевдо-першого та псевдо-другого порядків. Високі коефіцієнти кореляції свідчать про те, що кінетичні криві адсорбції лікарської сполуки на поверхні кремнезему при рН 5.0 та 7.0 можуть бути описані кінетичною моделлю псевдо-другого порядку. Рівноважну адсорбцію доксорубіцину було проаналізовано за допомогою моделей ізотерм Ленгмюра, Фрейндліха, Редліха-Петерсона та Брунауера-Еммета-Теллера. Модель БЕТ найбільше придатна для опису рівноважної адсорбції доксорубіцину МСМ-41 кремнеземом з розчинів з рН 7.0, тоді як адсорбція лікарської сполуки при рН 5.0 відповідає моделі Фрейндліха.

Ключові слова


кремнезем типу MCM-41; доксорубіцин; адсорбція

Повний текст:

PDF (English)

Посилання


1. Perry M.C. The Chemotherapy Source Book, 2nd edn. (Baltimore: Williams@Wilkins, 1996).

2. Bally M.B., Nayar R., Masin D., Cullis P.R., Mayer L.D. Studies on the myelosuppressive activity of doxorubicin entrapped in liposomes. Cancer Chemotherapy and Pharmacology. 1990. 27(1): 13. https://doi.org/10.1007/BF00689270 

3. Sumeet G., Swati M. Doxorubicin Induced Cardiotoxicity: The Spice Retreat. (Saarbruecken: Lambert Academic Publishing, 2014).

4. Roik N.V., Belyakova L.A. Cyclodextrin based drug stabilizing system. J. Mol. Struct. 2011. 987(13): 225.

5. Lee C.-H., Cheng S.-H., Huang I.-P., Souris J.S., Yang C.-S., Mou C.-Y., Lo L. W. Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew. Chem. 2010. 122(44): 8390. https://doi.org/10.1002/ange.201002639 

6. Meng H., Xue M., Xia T., Zhao, Y.-L., Tamanoi, F., Stoddart, J.F., Zink,J.I., Nel A.E. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J. Am. Chem. Soc. 2010. 132(36): 12690. https://doi.org/10.1021/ja104501a 

7. Gao Y., Chen Y., Ji X., He X., Yin Q., Zhang Z., Shi J., Li Y. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. Am. Chem. Sci. 2011. 5(12): 9788. https://doi.org/10.1021/nn2033105 

8. Knezevic N.Z., Trewyn B.G., Lin V.S.-Y. Light- and pH-responsive release of doxorubicin from a mesoporous silica based nanocarrier. Chem. Eur. J. 2011. 17(12): 3338. https://doi.org/10.1002/chem.201002960 

9. Roik N.V., Belyakova L.A. Interaction of supramolecular centers of silica surface with aromatic amino acids. J. Coll. Interf. Sci. 2011. 362(1): 172. https://doi.org/10.1016/j.jcis.2011.05.085 

10. Zhang X., Clime L., Roberge H., Normandin F., Yahia L.H., Sacher E., Veres T. pH-Triggered doxorubicin delivery based on hollow nanoporous silica nanoparticles with free-standing superparamagnetic Fe3O4 cores. J. Phys. Chem. C. 2011. 115(5): 1436. https://doi.org/10.1021/jp1075498 

11. Gu J., Su S., Zhu M., Li Y., Zhao W., Duan Y., Shi J. Targeted doxorubicin delivery to liver cancer cells by PEGylated mesoporous silica nanoparticles with a pH-dependent release profile. Micropor. Mesopor. Mater. 2012. 161: 160. https://doi.org/10.1016/j.micromeso.2012.05.035 

12. Chen Y., Yang W., Chang B., Hu H., Fang X., Sha X. In vivo distribution and antitumor activity of doxorubicin-loaded N-isopropylacrylamide-co-methacrylic acid coated mesoporous silica nanoparticles and safety evaluation. Europ. J. Pharm. Biopharm. 2013. 85(3): 406. https://doi.org/10.1016/j.ejpb.2013.06.015 

13. Hu X., Hao X., Wu Y., Zhang J., Zhang X., Wang P.C., Zou G., Liang X. J. Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dual response. J. Mater. Chem. B. 2013. 1: 1109. https://doi.org/10.1039/c2tb00223j 

14. Mishra A.K., Pandey H., Agarwal V., Ramteke P.W., Pandey A.C. Nanoengineered mesoporous silica nanoparticles for smart delivery of doxorubicin. J. Nanopart. Res. 2014. 16: 2515. https://doi.org/10.1007/s11051-014-2515-y 

15. Lee C.-H., Cheng S.-H., Huang I.-P., Souris J.S., Yang C.-S., Mou C.-Y., Lo L. W. Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew. Chem. 2010. 122: 8390. https://doi.org/10.1002/ange.201002639 

16. Meng H., Xue M., Xia T., Zhao Y.-L., Tamanoi F., Stoddart J.F., Zink J.I., Nel A.E. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J. Am. Chem. Soc. 2010. 132: 12690. https://doi.org/10.1021/ja104501a 

17. Knezevic N.Z., Trewyn B.G., Lin V.S.-Y. Light- and pH-responsive release of doxorubicin from a mesoporous silica based nanocarrier. Chem. Eur. J. 2011. 17: 3338. https://doi.org/10.1002/chem.201002960 

18. Lee J.E., Lee D.J., Lee N., Kim B.H., Choi S.H., Hyeon T. Multifunctional mesoporous silica nanocomposite nanoparticles for pH controlled drug release and dual modal imaging. J. Mater. Chem. 2011. 21: 16869. https://doi.org/10.1039/c1jm11869b 

19. Yuan L., Tang Q., Yang D., Zhang J.Z., Zhang F., Hu J. Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery. J. Phys. Chem. C. 2011. 115: 9926. https://doi.org/10.1021/jp201053d 

20. Gu J., Su S., Zhu M., Li Y., Zhao W., Duan Y., Shi J. Targeted doxorubicin delivery to liver cancer cells by PEGylated mesoporous silica nanoparticles with a pH-dependent release profile. Micropor. Mesopor. Mater. 2012. 161: 160. https://doi.org/10.1016/j.micromeso.2012.05.035 

21. Hu X., Hao X., Wu Y., Zhang J., Zhang X., Wang P.C., Zou G., Liang X. J. Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dual response. J. Mater. Chem. B. 2013. 1: 1109. https://doi.org/10.1039/c2tb00223j 

22. Knezevic N.Z., Ruiz-Hernandez E., Hennink W.E., Vallet-Regi M. Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications. RSC Adv. 2013. 3: 9584. https://doi.org/10.1039/c3ra23127e 

23. Kim M.S., Jeon J.B., Chang J.Y. Selectively functionalized mesoporous silica particles with the PEGylated outer surface and the doxorubicin-grafted inner surface: improvement of loading content and solubility. Micropor. Mesopor. Mater. 2013. 172: 118. https://doi.org/10.1016/j.micromeso.2013.01.028 

24. Roik N.V., Belyakova L.A. Sol-gel synthesis of MCM-41 silicas and selective vapor-phase modification of their surface. J. Solid State Chem. 2013. 207: 194. https://doi.org/10.1016/j.jssc.2013.09.027 

25. Roik N.V., Belyakova L.A. Chemical design of pH-sensitive nanovalves on outer surface of mesoporous silicas for controlled storage and release of aromatic amino acid. J. Solid State Chem. 2014. 215: 284. https://doi.org/10.1016/j.jssc.2014.04.018 

26. Florey K., ed. Analytical Profiles of Drug Substances. V. 9 (New York: Academic Press Inc., 1980).

27. Gritti F., Guiochon G. New thermodynamically consistent competitive adsorption isotherm in RPLC. J. Coll. Int. Sci. 2003. 264(1): 43. https://doi.org/10.1016/S0021-9797(03)00332-1 

28. Ebadi A., Mohammadzadeh J.S.S., Khudiev A. What is correct form of BET isotherm for modeling liquid phase adsorption. Adsorption. 2009. 15(1): 65.https://doi.org/10.1007/s10450-009-9151-3 




DOI: https://doi.org/10.15407/hftp07.04.405

Copyright (©) 2016 N. V. Roik, L. A. Belyakova, M. O. Dziazko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.