Хімія, фізика та технологія поверхні, 2020, 11 (1), 58-71.

Стабільні кремнієві електроди з полівініліденфторид-зв’язуючим для літій-іонних акумуляторів



DOI: https://doi.org/10.15407/hftp11.01.058

S. P. Kuksenko, Yu. O. Tarasenko, H. O. Kaleniuk, M. T. Кartel

Анотація


Заміна інтеркальованого графіту у традиційних літій-іонних акумуляторах на конверсійний кремнієвий анодний матеріал надає перевагу в підвищенні питомої енергії за нижчу ціну. Суттєвим недоліком кремнію є його дуже велике розбухання при насиченні літієм, із зростанням механічних навантажень в об’ємі електродного шару. Пряме використання кремнію, навіть нанорозмірного, неможливе без модифікування межі поділу «кремній | електроліт». Показане стабільне цикліювання кремнієвих електродів на основі нанокомпозиту Si@SiOC&C (0D É мікро–3D) з високим вмістом кремнію (9нано-Sі@1SiOC&C по масі) активною електропровідною добавкою синтетичного графіту KS6 і полівініліденфторид-зв’язуючим у традиційному етиленкарбонатному електроліті. Обговорюється вплив збагаченого вуглецем оксикарбіду кремнію (склоподібного вуглецю) – SiOC&C як модифікатора межі поділу «кремній | електроліт», синтезованого з використанням поліметилфенілсилоксану, на їхню електрохімічну поведінку. Формування при синтезі композиту структурно-інтегрованої межі поділу фаз, висока механічна міцность склоподібного вуглецю, здатність SiOC&C розміщувати у своєму об’ємі відносно велику кількість літію і низька електрокаталітична активність цього матеріалу по відношенню до органічного електроліту дозволяють акомодувати без розтріскування об’ємні зміни кремнію при літіюванні–делітіюванні, вирішуючи проблему запобігання руйнації вуглецевого покриття активних наночастинок в процесі тривалого цикліювання кремнієвих електродів. Склоподібний вуглецевий матеріал також може сприяти фазовому переходу кубічного α-Li15Si4, при утворенні якого об’єм вихідного кремнію зростає на 280 %, у більш щільний орторомбічний β-Li15Si4, із меншим зростанням об’єму кремнію (на 210 %). Тому звичайне для графітового аноду літій-іонних акумуляторів полівініліденфторид-зв’язуюче здатне забезпечити ефективний електричний контакт між частинками активного кремнієвого матеріалу і струмовідводом-підкладинкою. Такі електроди ефективні для використання у високоенергоємних літій-іонних суперакумуляторах.


Ключові слова


нанокремній; синтетичний графіт; збагачений вуглецем оксикарбід кремнію (склоподібний вуглець); кремнієві нанокомпозити; полівініліденфторид, етиленкарбонатний електроліт; літій-іонні акумулятори

Повний текст:

PDF

Посилання


1. Armand M., Tarascon J.-M. Building better batteries. Nature. 2008. 451(7179): 652. https://doi.org/10.1038/451652a

2. Osaka T., Nara H., Momma T., Yokoshima T. New Si-O-C composite film anode materials for LIB by electrodeposition. J. Mater. Chem. A. 2014. 2(4): 883. https://doi.org/10.1039/C3TA13080K

3. Choi J. W., Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016. 1(4): 16013/1. https://doi.org/10.1038/natrevmats.2016.13

4. Li M., Lu J., Chen Z.W., Amine K. 30 Years of Lithium‐Ion Batteries. Adv. Mater. 2018. 30(33): 1800561. https://doi.org/10.1002/adma.201800561

5. Turcheniuk K., Bondarev D., Singhal V., Yushin G. Ten years left to redesign lithium-ion batteries. Nature. 2018. 559(7715): 67. https://doi.org/10.1038/d41586-018-05752-3

6. Opitz A., Badami P., Shen L., Vignarooban K., Kannan A.M. Can Li-Ion batteries be the panacea for automotive applications? Renewable Sustainable Energy Rev. 2017. 68(1): 685. https://doi.org/10.1016/j.rser.2016.10.019

7. Ding Y., Cano Z. P., Yu A., Lu J., Chen Z. Automotive Li-ion batteries: Current status and future perspectives. Electrochem. Energy Rev. 2019. 2(1): 1. https://doi.org/10.1007/s41918-018-0022-z

8. Bourzac K. Batteries: 4 big questions. Nature. 2015. 526(7575): 105. https://doi.org/10.1038/526S105a

9. Nitta N., Wu F.X., Lee J.T., Yushin G. Li-ion battery materials: present and futur. Mater. Today. 2015. 18(5): 252. https://doi.org/10.1016/j.mattod.2014.10.040

10. Martin C. Driving change in the battery industry. Nat. Nanotechnol. 2014. 9(5): 327. https://doi.org/10.1038/nnano.2014.92

11. Schmuch R., Wagner R., Horpel G., Placke T., Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy. 2018. 3(4): 267. https://doi.org/10.1038/s41560-018-0107-2

12. Cano Z.P., Banham D., Ye S.Y., Hintennach A., Lu J., Fowler M., Chen Z.W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy. 2018. 3(4): 279. https://doi.org/10.1038/s41560-018-0108-1

13. https://www.marketwatch.com/press-release/lithium-ion-battery-market-is-set-to-grow-us-69-billion-by-2022-2019-01-07.

14. Zeng X., Li M., Abd El-Hady D., Alshitari W., Al-Bogami A.S., Lu J., Amine K. Commercialization of Lithium Battery Technologies for Electric Vehicles. Adv. Energy Mater. 2019. 9(27): 1900161. https://doi.org/10.1002/aenm.201900161

15. Yuca N., Taskin O. S., Arici E. An overview on efforts to enhance the Si electrode stability for lithium ion batteries. Energy Storage. 2020. 2(1): e94. https://doi.org/10.1002/est2.94

16. Peled E., Schneier D., Shaham Y., Ardel G., Burstein L., Kamir Y. Understanding the Spontaneous Reactions between Oxide-Free Silicon and Lithium-Battery Electrolytes. J. Electrochem. Soc. 2019. 166(10): 2091. https://doi.org/10.1149/2.1181910jes

17. Schneier D., Shaham Y., Ardel G., Burstein L., Kamir Y., Peled E. Elucidation of the Spontaneous Passivation of Silicon Anodes in Lithium Battery Electrolytes. J. Electrochem. Soc. 2019. 166(16): 4020. https://doi.org/10.1149/2.1081915jes

18. Kuksenko S.P. Cycling Parameters of Silicon Anode Materials for Lithium-Ion Batteries. Russ. J. Appl. Chem. 2010. 83(4): 641. https://doi.org/10.1134/S1070427210040130

19. Kuksenko S.P. Silicon Electrodes for Lithium-Ion Batteries: Ways of Cycling Parameters Improving. Fundamental problems of energy conversion in lithium electrochemical systems. (Novocherkassk: SRSTU (NPI), 2010). P. 147. [in Russian].

20. Kuksenko S.P., Kovalenko I.O. Silicon Nanopowder as Active Material for Hybrid Electrodes of Lithium-Ion Batteries. Russ. J. Appl. Chem. 2011. 84(7): 1179. https://doi.org/10.1134/S107042721107010X

21. Oumellal Y., Delpuech N., Mazouzi D., Dupré N., Gaubicher J., Moreau P., Soudan P., Lestriez B., Guyomard D. The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J. Mater. Chem. 2011. 21(17): 6201. https://doi.org/10.1039/c1jm10213c

22. Kim H., Han B., Choo J., Cho J. Three Dimensional Porous Silicon Particles for Use in High Performance Lithium Secondary Batteries. Angew. Chem. Int. Ed. 2008. 47(52): 10151. https://doi.org/10.1002/anie.200804355

23. Chan C.K., Peng H., Liu G., McIlwrath K., Zhang X.F., Huggins R.A., Cui Y. High-performance lithium battery anodes using silicon nanowires . Nat. Nanotechnol. 2008. 3(1): 31. https://doi.org/10.1038/nnano.2007.411

24. Krivchenko V.A., Itkis D.M., Evlashin S.A., Semenenko D.A, Goodilin E.A., Rakhimov A.T., Stepanov A.S., Suetin N.V., Pilevsky A.A., Voronin P.V. Carbon nanowalls decorated with silicon for lithium-ion batteries. Carbon. 2012. 50(3): 1438. https://doi.org/10.1016/j.carbon.2011.10.042

25. Liu N., Lu Z., Zhao J., McDowell M. T., Lee H-W., Zhao W., Cui Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014. 9(3): 187. https://doi.org/10.1038/nnano.2014.6

26. Zhu J., Gladden C., Liu N., Cui Y., Zhang H. Nanoporous silicon networks as anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 2013. 15(2): 440. https://doi.org/10.1039/C2CP44046F

27. Liu N., Wu H., McDowell M.T., Yao Y., Wang C., Cui Y. A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano Lett. 2012. 12(6): 3315. https://doi.org/10.1021/nl3014814

28. Wu H., Chan G., Choi J. W., Ryu I., Yao Y., McDowell M.T., Lee S. W., Jackson A., Yang Y., Hu L., Cui Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012. 7(5):310. https://doi.org/10.1038/nnano.2012.35

29. Kang K., Lee H-S., Han D-W., Kim G-S., Lee D., Lee G., Kang Y-M., Jo M-H. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery. Appl. Phys. Lett. 2010. 96(5): 053110. https://doi.org/10.1063/1.3299006

30. Evanoff K., Benson G., Schauer M., Kovalenko I., Lashmore D., Ready M.J., Yushin G. Ultra Strong Silicon-Coated Carbon Nanotube Nonwoven Fabric as a Multifunctional Lithium-Ion Battery Anode. ACS Nano. 2012. 6(11): 9837. https://doi.org/10.1021/nn303393p

31. Zhou X., Yin Y-X., Wan L-J., Guo Y-G. Self Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium-Ion Batteries. Adv. Energy Mater. 2012. 2(9): 1086. https://doi.org/10.1002/aenm.201200158

32. Chae S., Choi S.-H., Kim N., Sung J., Cho J. Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2020. 59(1): 110. https://doi.org/10.1002/anie.201902085

33. Magasinski A., Dixon P., Hertzberg B., Kvit A., Ayala J., Yushin G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010. 9: 353. https://doi.org/10.1038/nmat2725

34. Magasinski A., Zdyrko B., Kovalenko I., Hertzberg B., Burtovyy R., Huebner C.F., Fuller T.F., Luzinov I., Yushin G. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater. Interfaces. 2010. 2(11): 3004. https://doi.org/10.1021/am100871y

35. Jang S.Y., Han S.H. Characterization of a cross-linked polymer containing hydroxyl groups as a binder for high-capacity anodes in Li-ion batteries. J. Nanosci. Nanotechnol. 2019. 19(10): 6617. https://doi.org/10.1166/jnn.2019.17089

36. Wang Y., Dang D., Li D., Hu J., Cheng Y.-T. Influence of polymeric binders on mechanical properties and microstructure evolution of silicon composite electrodes during electrochemical cycling. J. Power Sources. 2019. 425: 170. https://doi.org/10.1016/j.jpowsour.2019.04.006

37. Zhang L., Wang C., Dou Y., Cheng N., Cui D., Du Y., Liu P., Al-Mamun M., Zhang S., Zhao H. A Yolk-Shell Structured Silicon Anode with Superior Conductivity and High Tap Density for Full Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2019. 131(26): 8916. https://doi.org/10.1002/ange.201903709

38. Wu H., Yu G., Pan L., N. Liu, McDowell M.T., Bao Z., Cui Y. Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013. 4(6): 1943. https://doi.org/10.1038/ncomms2941

39. Wu M.Y., Xiao X.C., Vukmirovic N., Xun S., Das P. K., Song X., Olalde-Velasco P., Wang D., Weber A.Z., Wang L.-W., Battaglia V.S., Yang W., Liu G. Toward an ideal polymer binder design for high-capacity battery anodes. J. Am. Chem. Soc. 2013. 135(32): 12048. https://doi.org/10.1021/ja4054465

40. Yuca N., Zhao H., Song X., Dogdu M. F., Yuan W., Fu Y., Battaglia V.S., Xiao X., Liu G. A systematic investigation of polymer binder flexibility on the electrode performance of lithium-ion batteries. ACS Appl. Mater. Interfaces. 2014. 6(19): 17111.

https://doi.org/10.1021/am504736y

41. Ichinose N., Ozaki Y., Kashu S.L. Superfine Particle Technology. (London: Springer-Verlag, 1992). https://doi.org/10.1007/978-1-4471-1808-4

42. Kuksenko S.P. Highly disordered silicon-containing carbon from polymethylphenylsiloxane as anode material for lithium-ion batteries: anomalous behavior in thin layer. Russ. J. Appl. Chem. 2016. 89(8): 1237. https://doi.org/10.1134/S1070427216080048

43. Wilamowska-Zawlocka M., Puczkarski P., Grabowska Z., Kaspar J., Graczyk-Zajac M., Riedel R., Gian D., Sorarù G.D. Silicon oxycarbide ceramics as anodes for lithium ion batteries: influence of carbon content on lithium storage capacity. RSC Adv. 2016. 6(106): 104597. https://doi.org/10.1039/C6RA24539K

44. Kuksenko S.P. Silicon-Containing Anodes with Low Accumulated Irreversible Capacity for Lithium-Ion Batteries. Russ. J. Appl. Chem. 2013. 86(5): 703. https://doi.org/10.1134/S1070427213050169

45. Kuksenko S.P. Silicon-Containing Anodes with High Capacity Loading for Lithium-Ion Batteries. Russ. J. Electrochem. 2014. 50(6): 537. https://doi.org/10.1134/S1023193514060068

46. Kuksenko S.P., Tarasenko Yu.A., Kartel M.T. Nonporous 3D-Silicon - Electrode Nanomaterial of High Efficiency for Practical Using in Lithium-Ion Batteries. In: Nanoscale Systems and Nanomaterials: Researches in Ukraine. (Kyiv: Academperiodika, 2014). [in Russian].

47. Patent WO 2016/102097 A1. HO1M 4/134, 4/38, 4/36. Put S., Van Genechten D., Gilleir J., Marx N., Muto A., Ishii N., Takeuchi M. Powder, electrode and battery comprising such a powder. 2016.

48. Patent WO 2018/050585 A1. HO1M 4/38, 4/587, 4/485, 4/62, 4/505, 10/0525, 4/525. Bridel J.-S., Put S., Ihm D., Nelis D.. Rechargeable electrochemical cell and battery. 2017.

49. Patent US 10483529 B2. HO1M 4/36, 4/38, 4/62, 10/0525, 10/04. Put S., Van Genechten D., Driesen K., Hu J., Strauven Y., Muto A., Ishii N., Takeuchi M. Composite powder for use in an anode of a lithium ion battery, method of preparing such a composite powder and method for analysing such a composite powder. 2019.

50. Kuksenko S.P. Influence of Surface Lithium-Aluminum Alloy on the Anodes of 3-V Lithium Cells on Their Electric Characteristics. Russ. J. Appl. Chem. 1996. 69(10): 1487.

51. Kuksenko S.P. Aluminum Foil as Anode Material of Lithium-Ion Batteries: Effect of Electrolyte Compositions on Cycling Parameters. Russ. J. Electrochem. 2013. 49(1): 67. https://doi.org/10.1134/S1023193512110080

52. Kuksenko S.P. Cycling Parameters of MAG Graphite as Anode Material for Lithium-Ion Batteries. Russ. J. Appl. Chem. 2010. 83(4): 648. https://doi.org/10.1134/S1070427210040142

53. Obrovac M.N., Christensen L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 2004. 7(5): A93. https://doi.org/10.1149/1.1652421

54. Kuksenko S.P., Tarasenko Yu.A., Kovalenko I.O., Kartel M.T. Carbon coating micro- and nanosilicon: progress silicon anode materials for lithium-ion batteries. Chemistry, Physics and Technology of Surface. 2009. 15: 144.

55. Yen Y.-C., Chao S.-C., Wu H.-C., Wu N.-L. Study on solid-electrolyte-interphase of Si and C-coated Si electrodes in lithium cells. J. Electrochem. Soc. 2009. 156(2): A95. https://doi.org/10.1149/1.3032230

56. Lu B., Song Y., Zhang Q., Pan J., Cheng Y-T., Zhang J. Voltage hysteresis of lithium ion batteries caused by mechanical stress. Phys. Chem. Chem. Phys. 2016. 18(6): 4721. https://doi.org/10.1039/C5CP06179B

57. Kuksenko S.P., Kovalenko I.O. Synthesis of a Silicon-Graphite Composite for the Hybrid Electrode of Lithium-Ion Batteries. Russ. J. Appl. Chem. 2010. 83(10): 1811. https://doi.org/10.1134/S1070427210100149

58. Chevrier V.L., Liu L., Le D.B., Lund J., Molla B., Reimer K., Krause L.J., Jensen L.D., Figgemeier E., Eberman K.W. Evaluating Si-Based Materials for Li-Ion Batteries in Commercially Relevant Negative Electrodes. J. Electrochem. Soc. 2014. 161(5): 783. https://doi.org/10.1149/2.066405jes

59. Kuksenko S.P., Kovalenko I.O., Tarasenko Yu.A., Kartel M.T. Nanocomposite Silicon-Carbon for Hybrid Electrodes of Lithium-Ion Batteries. Voprosy Khimii i Khimicheskoi Tekhnologii. 2011. 4(1): 299. [in Russian].

60. Kuksenko S.P. Nonporous nanostructured 3D-silicon for anodes of lithium-ion batteries. In: Nanotechnologies and Nanomaterials for Business and Technology Areas. Booklet of nanotechnologies of the participants of the International Technology Meeting (November 22, 2013, Kyiv, Ukraine). P. 11.

61. Kuksenko S.P. Nonporous 3D-Silicon - High Efficiency Electrode Nanomaterial for New Generation of Lithium-Ion Batteries. In: Nanotechnologies and Nanomaterials. Technology Developments Book. (Lviv: Eurosvit, 2014). P. 218.

62. Kaspar J., Graczyk-Zajac M., Lauterbach S., Kleebe H.-J., Riedel R. J. Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties. J. Power Sources. 2014. 269: 164. https://doi.org/10.1016/j.jpowsour.2014.06.089

63. Choi S., Jung D.S., Choi J.W. Scalable Fracture-free SiOC Glass Coating for Robust Silicon Nanoparticle Anodes in Lithium Secondary Batteries. Nano Lett. 2014. 14(12): 7120. https://doi.org/10.1021/nl503620z

64. Vrankovic D., Wissel K., Graczyk-Zajac M., Riedel R. Novel 3D Si/C/SiOC nanocomposites: Toward electrochemically stable lithium storage in silicon. Solid State Ionics. 2017. 302: 66. https://doi.org/10.1016/j.ssi.2016.11.009

65. Zeng Z., Zeng Q., Liu N., Oganov A.R., Zeng Q., Cui Y., Mao W.L. A Novel Phase of Li15Si4 Synthesized under Pressure. Adv. Energy Mater. 2015. 5(12): 1500214/1. https://doi.org/10.1002/aenm.201500214




DOI: https://doi.org/10.15407/hftp11.01.058

Copyright (©) 2020 S. P. Kuksenko, Yu. O. Tarasenko, H. O. Kaleniuk, M. T. Кartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.