Хімія, фізика та технологія поверхні, 2015, 6 (2), 244-255.

Температурна поведінка води та н-декану, зв’язаних нанокремнеземом або поліметилсилоксаном



DOI: https://doi.org/10.15407/hftp06.02.244

V. V. Turov, T. V. Krupska, M. D. Tsapko, V. M. Gun'ko

Анотація


Фазові переходи н-декану, зв’язаного нанокремнеземом, вихідним гідрофільним або модифікованим гідрофобним, і розгалуженим 3D полі(метилсилоксаном), ПМС, проаналізовано з використанням 1H ЯМР спектроскопії та квантовохімічних методів. Точки замерзання і плавлення н-декану залежать від дії нанокремнезему або ПМС в середовищі CDCl3, яке здатне розчиняти декан. Поведінка суміші води і декану залежить від текстури та будови поверхні адсорбентів, вмісту мікрочастинок солі та ко-адсорбатів. Зниження точки замерзання декану у обмеженому просторі істотніше, ніж затримка його плавлення внаслідок кінетичних ефектів та іммобілізації в мезопорах заморожених структур. Дисперсійне середовище (неполярний CCl4, слабкополярний CDCl3, полярні CD3CN і трифтороцтова кислота) впливає на температурну поведінку на межі поділу сумішей води та декану, оскільки декан може легко розчинятися в неполярних або слабкополярних розчинниках, а вода може сильно взаємодіяти з полярними розчинниками та полярними твердими наночастинками.

Ключові слова


поліметилсилоксан; хлориди лужних металів; зв’язані вода та декан; поведінка на межі поділу сумішей води та декану

Повний текст:

PDF (English)

Посилання


1. Emmerich W. Chemical thermodynamics: A journey of many vistas, J. Solution Chem., 43 (2014) 526.

2. Affens W.A., Hall J.M., Holt S., Hazlett R.N. Effect of composition on freezing points of model hydrocarbon fuels, Fuel, 63 (1984) 543.

3. Moynihan C.T., Shahriari M.R., Bardakci T. Thermal analysis of melting and freezing of jet and diesel fuels, Thermochimica Acta, 52 (1982) 131.

4. Jahromi S.G., Khodaii A. Effects of nanoclay on rheological properties of bitumen binder, Construction and Building Materials, 23 (2009) 2894.

5. Chaplin M. Water structure and science. http://www.lsbu.ac.uk/water/.

6. Kunz W. (ed.). Specific Ion Effects. (Singapore: World Scientific Publishing Co. Pte. Ltd, 2009).

7. Collins K.D. Ions from the Hofmeister series and osmolytes: Effects on proteins in solution and in the crystallization process, Methods, 34 (2004) 300.

8. Robinson J.B.Jr., Strottmann J.M., Stellwagen E. Prediction of neutral salt elution profiles for affinity chromatography, Proc. Nat. Acad. Sci. USA, 78 (1981) 2287.

9. Gupta S., Pel L., Kopinga K. Crystallization behavior of NaCl droplet during repeated crystallization and dissolution cycles: An NMR study, Journal of Crystal Growth, 391 (2014) 64.

10. Simpson A.J., McNally D.J., Simpson M.J. NMR spectroscopy in environmental research: from molecular interactions to global processes, Prog. Nucl. Magn. Reson. Spectrosc., 58 (2011) 97.

11. Gerothanassis I.P. Oxygen-17 NMR spectroscopy: basic principles and appli-cations. Part II, Prog. Nucl. Magn. Reson. Spectrosc., 57 (2010) 1.

12. Demangeat J.-L. Nanosized solvent superstructures in ultramolecular aqueous dilutions: twenty years’ research using water proton NMR relaxation, Homeopathy, 102 (2013) 87.

13. Koptyug I.V. MRI of mass transport in porous media: drying and sorption processes, Prog. Nucl. Magn. Reson. Spectrosc., 65 (2012) 1.

14. Kasian N., Verheyen E., Vanbutsele G. et al. Catalytic activity of germanosilicate UTL zeolite in bifunctional hydroisomerisation of  n-decane, Microporous Mesoporous Mater., 166 (2013) 153.

15. Davarpanah L., Vahabzadeh F. Formation of oil-in-water (O/W) pickering emulsions via complexation between b-cyclodextrin and selected organic solvents, Starch, 64 (2012) 898.

16. Martinelli E., Paoli F., Gallot B., Galli G. Mesophase structure of low-wetting liquid crystalline polyacrylates with new perfluoroalkyl benzoate side groups, J. Polym. Sci. Part A Polym. Chem., 48 (2010) 4128.

17. Abu-Sharkh B.F., Yahaya G.O., Ali S.A., Kazi I.W. Solution and interfacial behavior of hydrophobically modified water-soluble block copolymers of acrylamide and N-phenethy-lacrylamide, J. Appl. Polym. Sci., 82 (2001) 467.

18. Hill J., Harris A. W., Manning M. et al. The effect of sodium chloride on the dissolution of calcium silicate hydrate gels, Waste Manag., 26 (2006) 758.

19. Čapek L., Dědeček J., Wichterlová B. et al. Cu-ZSM-5 zeolite highly active in reduction of NO with decane, Appl. Catal. B Environ., 60 (2005) 147.

20. Rahimi-Nasrabadi M., Maddah B., Shamsipur M., Moghimi A. NMR study of the stoichiometry and stability of 30-crown-10 complexes with Ca2+, Sr2+, Ba2+ and Pb2+ cations in acetonitrile-dimethylformamide binary mixtures, J. Solution Chem., 43 (2014) 623.

21. Martins J.G., Pinto R.M., Gameiro P. et al. Aqueous equilibrium and solution structural studies of the interaction of N,N’-bis(4-imidazolymethyl)ethylenediamine with Ca(II), Cd(II), Co(II), Mg(II), Mn(II), Ni(II), Pb(II) and Zn(II) metal ions, J. Solution Chem., 39 (2010) 1153.

22. Barros C.N., Arêas E.P.G., Figueiredo E.N., Arêas J.A.G. Low-resolution 1H spin-spin relaxation of n-decane/water emulsions stabilized by beta-casein, Colloids Surf. B. Biointerfaces, 48 (2006) 119.

23. Rotureau E., Leonard M., Dellacherie E., Durand A. Amphiphilic derivatives of dextran: adsorption at air/water and oil/water interfaces, J. Colloid Interface Sci., 279 (2004) 68.

24. Moradi M., Topchiy E., Lehmann T.E., Alvarado V. Impact of ionic strength on partitioning of naphthenic acids in water–crude oil systems – Determination through high-field NMR spectroscopy, Fuel, 112 (2013) 236.

25. Costa-Riu N., Maier E., Burkovski A. et al. Identification of an anion-specific channel in the cell wall of the Gram-positive bacterium Corynebacterium glutamicum, Mol. Microbiol., 50 (2003) 1295.

26. Jung G., Redemann T., Kroll K. et al. Template-free self-assembling fullerene and lipopeptide conjugates of alamethicin form voltage-dependent ion channels of remarkable stability and activity, J. Pept. Sci., 9 (2003) 784.

27. Lin J.C., Chuang W.H. Synthesis, surface characterization, and platelet reactivity evaluation for the self-assembled monolayer of alkanethiol with sulfonic acid functionality, J. Biomed. Mater. Res., 51 (2000) 413.

28. Frasch H.F., Barbero A.M., Dotson G.S., Bunge A.L. Dermal permeation of 2-hydroxypropyl acrylate, a model water-miscible compound: effects of concentration, thermodynamic activity and skin hydration, Int. J. Pharm., 460 (2014) 240.

29. Gun’ko V.M., Turov V.V., Krupska T.V. et al. Interfacial behavior of silicone oils interacting with nanosilica and silica gels, J. Colloid Interface Sci., 394 (2013) 467.

30. Turov V.V., Gun’ko V.M., Zarko V.I. et al. Interfacial behavior of n-decane bound to weakly hydrated silica gel and nanosilica over a broad temperature range, Langmuir, 29 (2013) 4303.

31. Mitchell J., Webber J.B.W., Strange J.H. Nuclear magnetic resonance cryoporometry, Phys. Rep., 461 (2008) 1.

32. Petrov O.V., Furó I. NMR cryoporometry: Principles, application and potential, Progr. NMR Spectroscopy, 54 (2009) 97.

33. Aksnes D.W., Forl K., Kimtys L. Pore size distribution in mesoporous materials as studied by 1H NMR, Phys. Chem. Chem. Phys., 3 (2001) 3203.

34. Gun’ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013).

35. Gun'ko V.M., Skubiszewska-Zięba J., Leboda R. et al. Influence of morphology and composition of fumed oxides on changes in their structural and adsorptive characteristics on hydrothermal treatment at different temperatures, J. Colloid Interface Sci., 269 (2004) 403.

36. Gun'ko V.M., Leboda R., Skubiszewska-Zięba J. et al. Structure of silica gel Si-60 and pyrocarbon/silica gel adsorbents thermally and hydrothermally treated, Langmuir, 17 (2001) 3148.

37. Mironyuk I. F., Gun'ko V.M., Turov V. V. et al. Characterization of fumed silicas and their interaction with water and dissolved proteins, Colloids Surf. A: Physicochem. Eng. Aspects, 180 (2001) 87.

38. Gun’ko V.M., Turov V.V., Zarko V.I. et al. Comparative characterization of polymethyl-siloxane hydrogel and silylated fumed silica and silica gel, J. Colloid Interface Sci., 308 (2007) 142.

39. Frisch M. J., Trucks G. W., Schlegel H. B. et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

40. Stewart J.J.P. MOPAC 2012, Colorado Springs, CO, Stewart Computational Chemistry, USA, http://openmopac.net/, 2014.

41. Maia J.D.C., Carvalho G.A.U., Mangueira C.P. Jr. et al. GPU linear algebra libraries and GPGPU programming for accelerating MOPAC semiempirical quantum chemistry calculations, J. Chem. Theory Comput., 8 (2012) 3072.

42. Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B, 113 (2009) 6378.

43. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. General atomic and molecular electronic structure system, J. Comput. Chem., 14 (1993) 1347.

44. Turov V.V., Gun’ko V.M., Turova A.A. et al. Interfacial behavior of concentrated HCl solution and water clustered at a surface of nanosilica in weakly polar solvents media, Colloids Surf. A: Physicochem. Eng. Aspects, 390 (2011) 48.

45. Gun’ko V.M., Morozova L.P., Turova A.A. et al. Hydrated phosphorus oxyacids alone and adsorbed on nanosilica, J. Colloid Interface Sci., 368 (2012) 263.




DOI: https://doi.org/10.15407/hftp06.02.244

Copyright (©) 2015 V. V. Turov, T. V. Krupska, M. D. Tsapko, V. M. Gun'ko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.