Хімія, фізика та технологія поверхні, 2017, 8 (1), 10-17.

Вплив термообробки в азотовмісному середовищі на фізико-хімічні властивості матеріалу медичного призначення на основі біогенного гідроксиапатиту



DOI: https://doi.org/10.15407/hftp08.01.010

O. M. Otychenko, T. E. Babutina, O. R. Parkhomey, O. M. Budylina, L. S. Protsenko, I. V. Uvarova

Анотація


Проведено дослідження фізико-хімічних характеристик та адсорбційної активності по метиленовому синьому матеріалів медичного призначення на основі біогенного гідроксиапатиту (БГА), легованого наномагнетитом із застосуванням двох способів використання конденсаційного фізико-хімічного методу. Виявлено рівномірний розподіл феромагнітних частинок по БГА та складну мікроструктуру зразків.

Ключові слова


біогенний гідроксиапатит; наномагнетит; фазовий склад; мікроструктура; біорозчинність; адсорбційна активність

Повний текст:

PDF (English)

Посилання


1. Snyderman C.-H., Scioscia K., Carrau R.-L., Weissman J.-L. Hydroxyapatite: an alternative method of frontal sinus obliteration. Otolaryngol. Clin. North. Am. 2001. 34(1):179. https://doi.org/10.1016/S0030-6665(05)70305-4

2. Hornez J.-C., Chai F., Monch au F., Blanchemain N., Descamps M., Hildebrand H.F. Biologycal and physico-chemical assessment of hydroxyapaite (HA) with different porosity. Biomol. Eng. 2007. 24(5): 505. https://doi.org/10.1016/j.bioeng.2007.08.015

3. Jang J.-H., Castano O., Kim H.-W. Electrospun materials as potential platforms for bone tissue engineering. Adv. Drug Delivery Rev. 2009. 61(12): 1065. https://doi.org/10.1016/j.addr.2009.07.008

4. Ivanchenko L.A., Parkhomey A.R., Popandopulo A.H., Oberemko A.V. Prospects of using composite hydroxyapatite ceramic as a carrier of cultured stem cells. Glass and Ceramics. 2011. 11: 31. [in Russian].

5. Amonoo-Kuofi K., Kelly A., Neeff M., Brown C.-R.S. Experience of bone-anchored hearing aid implantation in children younger than 5 years old. Int. J. Pediatr. Otorhinolaryngol. 2015. 79(4): 474. https://doi.org/10.1016/j.ijporl.2014.12.033

6. Fu C., Song B., Wan C., Savino K., Wang Yu., Zhang X., Yates M.Z. Electrochemical growth of composite hydroxyapatite coatings for controlled release. Surf. Coat. Technol. 2015. 276: 618. https://doi.org/10.1016/j.surfcoat.2015.06.007

7. Danyl'chenko S.N. Structure and properties of calcium apatites from point of view of biomineralogy and biomaterialogy (Review). Visnyk SumDU. – Seria: Phys., Math., Mech. 2007. 2: 33. [in Russian].

8. Zhang L., Webster T.-J. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009. 4(1): 66. https://doi.org/10.1016/j.nantod.2008.10.014

9. Tapan K.J., Reddy M.K., Morales M.A., Leslie-Pelecky D.L., Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm. 2008. 5(2): 316. https://doi.org/10.1021/mp7001285

10. Prijic S., Scancar J., Romih R., Cemazar M., Bregar V.B., Znidarsic A., Sersa G. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. J. Membr. Biol. 2010. 236(1): 167. https://doi.org/10.1007/s00232-010-9271-4

11. Belikov V.G., Kurehyan A.G., Ismailova G.K. Standartization of magnetite. Pharmaceutical Chemistry Journal. 2002. 36(6): 333. [in Russian]. https://doi.org/10.1023/A:1020845110683

12. Filatov S.A., Kuchinskiy G.S., Lale J.-M. Filatova O.S. Doped and decorated carbone nanomaterials for system of accumulated energy. In: Nanosized systems: structure, properties, technology (NANSYS-2013): Proc. IV Int. Conf. (Kyiv, 2013). P. 48 [in Russian].

13. Ul'yanchich N.V., Ivaschenko E.A., Uvarova I.V., Ksenzova O.V., Svirid E.S., Protsenko L.S., Budilin O.N., Datskevich O.V. The possibility of using of calcium phosphates based ceramics as a drug carrier. Ukr. Morph. Al'manah. 2010. 8(2): 44 [in Russian].

14. Rational antibiotics theraphy in traumatology and ortophedics: inform. book for doctors. (Moscow, Sc.-Inf. Center LTD ABOLmed, 2009). [in Russian].

15. Patent UA 23250. Podrushnyak E.P., Ivanchenko L.A., Pinchuk N.D. Compositional material and method of it's obtaining. 2003.

16. Otychenko O., Parkhomey A., Babutina T., Uvarova I. Biogenic hydroxyapatite doped with nanomagnetite using condensed physico-chemical method. In: HighMathTech–2015: Abstracts of the 5th Intern. Conf. (Oct. 5–8, 2015, Kyiv, Ukraine). P. 204.

17. Otychenko O. Influence of low-temperature thermolysis in the carbon-containing medium on resorption properties of composite systems based on biogenic hydroxyapatite doped with magnetic additions. In: Science and Medicine: Proc. Int. Stud. and Young Sc. Conf. (Almaty, 2016). P. 459. [in Russian].

18. Otychenko O.M., Parkhomey O.R., Uvarova I.V. Effect of phase composition and dispersity on biochemical properties of hydroxyapatite alloyed with nanomagnetite. Nanostr. Material Sci. J. 2015. 1: 86 [in Ukrainian].

19. Otychenko O.M., Pinchuk N.D., Parkhomey O.R. Effect of preliminary magnetic treatment on dynamics dissolubility of composition hydroxyapatite material. Nanostr. Material Sci. J. 2014. 2: 45. [in Ukrainian].

20. Tyazhelov O.A., Ashukina N.O., Ivanov G.V., Komarov M.P. Valuation of biocompatibility of carbon-carbonic composite material in the experiment. Orth., Traum. and Prosth. 2005. 4: 47. [in Russian].

21. Interstate Standart (GOST 4453-77). Charcoal active lighting powder. http://www.complexdoc.ru.




DOI: https://doi.org/10.15407/hftp08.01.010

Copyright (©) 2017 O. M. Otychenko, T. E. Babutina, O. R. Parkhomey, O. M. Budylina, L. S. Protsenko, I. V. Uvarova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.