Chemistry, Physics and Technology of Surface, 2011, 2 (3), 308-313.

Optical Properties of Nanostructured WO3 Films



S. S. Fomanyuk, G. Ya. Kolbasov, Yu. S. Krasnov, V. N. Zaichenko

Abstract


Nanostructured hydrated WO3 films deposited on glass and on glass with a layer of SnO2 or with Au film have been obtained by chemical and electrochemical methods. The angular and spectral dependences of total internal reflection and surface plasmon resonance for different values of oxide potential have been measured on fabricated planar glass-WO3 and glass-Au-WO3 structures placed in an electrolyte (0,5M H2SO4). These dependences were compared with the results of computer simulation, using experimental values of n and k for these WOfilms, prepared by interferometry. It has been shown that in presence of thin catalyst layer (Pt or Pd) on  WO3 surface optical hydrogen sensors for the determination of hydrogen content in  air at 0-5 vol.% H2 can be created  based on these structures.

Full Text:

PDF (Русский)

References


Monk P.M.S.K., Mortimer R.J., Rosseinsky D.R. Electrochromism. Fundamentals and Applications. – Weinheim: VCH, 1995. – 216 p.

Granqvist C.G. Handbook of Inorganic Electrochromic Materials. – Amsterdam: Elsevier, 1995. – 650 p.

Boulova M., Gaskov A., Lucazeau G. Tungsten oxide reactivity versus CH4, CO and NO2 molecules studied by Raman spectroscopy // Sens. Actuators B. – 2001. – V. 81. – P. 99–106.

Lee D.S., Nam K.H., Lee D.D. Effect of substrate on NO2-sensing properties of WO3 thin film gas sensors // Thin Solid Films. – 2000. – V. 375. – P. 142–146.

Qu W.M., Wlodarski W. A thin-film sensing element for ozone, humidity and temperature // Sens. Actuators B. – 2000. – V. 64. – P. 42–48.

Sharma N., Deepa M., Varshney P., Agnihotry S.A. FTIR investigations of tungsten oxide electrochromic films derived from organically modified peroxotungstic acid precursors // J. Sol-Gel Sci. Technol. – 2000. – V. 18. – P. 167–173.

Hoel A., Reyes L.F., Heszler P. et al. Nanomaterials for environmental applications: novel WO3-based gas sensors made by advanced gas deposition // Curr. Appl. Phys. – 2004. – V. 4. – P. 547–553.

Faughnan B.W, Crandall R.S. Electrochromic displays based on WO3 // Display devices / еd. J.I. Pancove. – Berlin: Springer, 1980. – P. 181–212.

Lee S.-H., Cheong H.M., Edvin T.S. et al. Influence of microstructure on the chemical diffusion of lithium ions in amorphous lithiated tungsten oxide films // Electrochim. Acta. – 2001. – V. 46. – P. 3415–3419.

Meulenkamp E.A. Mechanism of WO3 electrodeposition from peroxy-tungstate solution // J. Electrochem. Soc. – 1997. – V. 144. – P. 1664–1671.

Shiyanovskaya I., Hepel M., Tewksburry E. Electrochromism in electrodeposited nanocrystalline WO3 films // J. New Mater. Electrochem. Syst. – 2000. – V. 3. – P. 241–247.

Stevenson K.J., Hupp J.T. Microvisualization of structural and ion electroinsertion properties of patterned WO3 thin films via integrated optical and atomic force microscopies // Electrochem. Solid-State Lett. – 1999. – V. 2. – P. 497–500.

Habazaki H., Hayashi Y., Konno H. Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment // Electrochim. Acta. – 2002. – V. 47, N 26. – P. 4181–4188.

Yamase T. Photo- and electrochromism of polyoxometalates and related materials // Chem. Rev. – 1998. – V. 98. – P. 307–325.

Krasnov Yu.S., Kolbasov G.Ya. Electrochromism and reversible changes in the position of fundamental absorption edge in cathodically deposited amorphous WO3 // Electrochim. Acta. – 2004. – V. 49, N 15.– P. 2425–2433.

Krasnov Yu.S., Volkov S.V., Kolbasov G.Ya. Optical and kinetic properties of cathodically deposited amorphous tungsten oxide films // J. Non-Cryst. Solids. – 2006. –V. 352. – P. 3995–4002.

Колбасов Г.Я., Волков С.В., Краснов Ю.С, Зайченко В.Н. Оптический сенсор на основе химически и электрохимически осажденных пленок WO3 // Сенсорна електроніка і мікросистемні технології. – 2006. – № 3. – С. 40–45.

Колбасов Г.Я., Волков С.В., Краснов Ю.С., Фоманюк С.С. Оптический сенсор водорода на основе пленки оксида вольфрама // Сенсорна електроніка і мікросистемні технології. – 2008. – № 4. – С. 27–32.

Shieh J., Feng H.M., Hon M.H., Juang H.Y. WO3 and W-Ti-O thin-film gas sensors prepared by sol-gel dip-coating // Sens. Actuators B. – V. 86, N 1. – P. 75–80.

Choi Y.-G., Sakai G., Shimanoe K. et al. Preparation of aqueous sols of tungsten oxide dihydrate from sodium tungstate by an ion-exchange method // Sens. Actuators B. – V. 87, N 1. – P. 63–72.

Supothina S., Seeharaj P., Yoriya S., Sriyudthsak M. Synthesis of tungsten oxide nanoparticles by acidprecipitation method // Ceram. Int. – 2007. – V. 33. – P. 931–936.

Tanaka Y., Miyayama M., Hibino M., Kudo T. Preparation and proton conductivity of WO3 center dot 2H2O/epoxy composite films // Solid State Ionics. – 2004. – V. 171, N 1–2. – P. 33–39.

Sun Q., Luo J., Xie Z. et al. Synthesis of monodisperse WO3·2H2O nanospheres by microwave hydrothermal process with l+ tartaric acid as a protective agent // Mater. Lett. – 2008. – V. 62, N 6. – P. 2992–2994.

Колтун М.М. Селективные оптические поверхности преобразователей солнечной энергии. – Москва: Наука, 1979. – 215 c.

Укше Е.А., Леонова Л.С. Потенциометрический водородный сенсор с протонным твердым электролитом // Электрохимия. – 1992. – Т. 28, № 10. – С. 1427–1437.

Якутин В.И, Струков О.Г. Спектроскопия внутреннего отражения. Применение в химии и промышленности // Усп. химии. – 1972. – Т. 16, № 8. – С. 1504–1535.




Copyright (©) 2011 S. S. Fomanyuk, G. A. Kolbasov, Yu. S. Krasnov, V. N. Zaichenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.