Chemistry, Physics and Technology of Surface, 2011, 2 (4), 456-460.

Effect of Silica Surface on Hydrolysis of Acetylsalicylic Acid: Theoretical Simulation



E. M. Demianenko

Abstract


Using methods of quantum chemistry, the mechanisms of hydrolytic degradation of acetylsalicylic acid have been considered in aqueous solution at pH values from 2 to 4 and from 4 to 8.5 as well as those involving silica surface. The results of calculations have been confirmed the experimental data on intramolecular catalysis of hydrolysis of acetylsalicylic acid at pH 4 to 8.5. It has been shown that the activation energy of surface reaction of hydrolysis is lower than that in aqueous solution due to specific interaction between silica surface and molecules of water and acetylsalicylic acid.

 

Full Text:

PDF

References


Heidarian M., Mihranyan A., Strømme M., Ek R. Influence of water-cellulose binding energy on stability of acetylsalicylic acid // Int. J. Pharmaceutics. – 2006. – V. 323, N 1–2. – Р. 139–145.

Басюк В. А. Органические реакции на поверхности диоксида кремния: синтетические приложения // Успехи химии. – 1995. – T. 64, № 11. ‑ С. 1073–1090.

Daniels R., Kerstiens B. , Tischinger-Wagner H., Rupprecht H . The stability of drug adsorbates on silica // Drug Develop. Ind. Pharmacy. – 1986. – V. 12, N 11–13. ‑ P. 2127–2156.

Боресков Г.К. Гетерогенный катализ. – Москва: Наука, 1988. – 304 с.

Szeto Michelle W.Y., Mujika J. I., Zurek J. et al.QM/MM study on the mechanism of peptide hydrolysis by carboxypeptidase // Journal of Molecular Structure: THEOCHEM. – 2009. – V. 898, N 1–3. – P. 106–114.

Okimoto N., Hata M., Hoshino T., Tsuda M. Protein hydrolysis mechanism of HIV-1 protease: Investigation by the ab initio MO calculations // RIKEN Review. – 2000. – N 29. – P. 100–102.

Glaser R. Aspirin. An ab Initio Quantum-Mechanical study of conformational preferences and of neighboring group interactions // J. Org. Chem. – 2001. – V. 66, N 3. – P. 771–779.

Ouvrard C., Sarah L. Price toward crystal structure prediction for conformationally flexible molecules: the headaches illustrated by aspirin crystal // Growth and Design. – 2004. – V. 4, N 6. – P. 1119–1127.

Boczar M., Wójcik M.J., Szczeponek K. et al. Theoretical modeling of infrared spectra of aspirin and its deuterated derivative // Chem. Phys. – 2003. – V. 286, N 1. – P. 63–79.

Boczar M., Boda Ł., Wójcik M.J. Theoretical modeling of infrared spectra of hydrogen-bonded crystals of salicylic acid // Spectrochimica Acta A. – 2006. ‑ V. 64, N 3. ‑ P. 757–760.

Roggero I., Civalleri B., Ugliengo P. Modeling physisorption with the ONIOM method: the case of NH3 at the isolated hydroxyl group of the silica surface // Chem. Phys. Lett. – 2001. – V. 341, N 5. – P. 625–632.

Cossi M., Barone V., Cammi R., Tomasi J., Ab initio study of solvated molecules: a new implementation of the polarizable continuum model // Chem. Phys. Lett. – 1996. – V. 255, N 4–6. – Р. 327–335.

Schmidt M.W., Baldridge K.K., Boatz J.A. et al. General atomic and molecular electronic structure system // J. Comput. Chem. – 1993. – V. 14. – P. 1347–1363.

Жидомиров Г.М., Багатурьянц А.А., Абронин И.А. Прикладная квантовая химия. Расчеты реакционной способности и механизмов химических реакций. – Москва: Химия, 1979. – 296 с.

Wales D.J., Berry R.S. Limitations of the Murrell-Laidler theorem // J. Chem. Soc. Faraday Trans. – 1992. – V. 88, N 4. – P. 543–544.

Jensen F. Introduction to computational chemistry. – Denmark: John Wiley end Sons, 2007. – 599 р.

Edwards L. J. The hydrolysis of aspirin. A determination of the thermodynamic dissociation constant and a study of the reaction kinetics by ultra-violet spectrophotometry // Trans. Faraday Soc. – 1950. – V. 46. – P. 723–735.




Copyright (©) 2011 E. M. Demianenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.