Photocatalytic Formation and Photoinduced Charging of ZnO–Au Nanostructures
Abstract
Photocatalytic NaAuCl4 reduction by ethanol with the participation of ZnO nanocrystals results in the formation of gold nanocrystals with the mean size of 25–30 nm. The strongly pronounced autocatalytic character of the process reflects the fact that the ZnO–Au nanostructure produced at the initial stage of the photoreaction is a much more efficient photocatalyst than the original ZnO nanocrystals. The charging of gold nanocrystals by photogenerated ZnO conduction band electrons is accompanied by the equilibration of Fermi energies of the metal and semiconductor resulting in the charge redistribution between the components of ZnO–Au nanostructure and photoinduced polarization of ZnO nanocrystals. A long lifetime of the charged state of ZnO–Au nanostructure reflects an exceptional capability of gold nanocrystals to accumulate and retain negative charge.
References
Energy resources through photochemistry and catalysis / Ed. M. Gr?tzel. – New York: Academic Press, 1983. – 588 p.
Stroyuk A.L., Kryukov A.I., Kuchmiy S.Ya., Pokhodenko V.D. Quantum size effects in semiconductor photo catalysis // Theor. Exp. Chem. – 2005. – V. 41, N 4. – P. 207–228.
Wood A., Giersig M., Mulvaney P. Fermi level equilibration in quantum dot-metal nanojunctions // J. Phys. Chem. B. – 2001. – V. 105, N 37. – P. 8810–8815.
Subramanian V., Wolf E.E., Kamat P.V. Green emission to probe photoinduced charging events in ZnO?Au nanoparticles. Charge distribution and Fermi-level equilibration // J. Phys. Chem. B. – 2003. – V. 107, N 30. – P. 7479–7485.
Subramanian V., Wolf E.E., Kamat P.V. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? // J. Phys. Chem. B. – 2001. – V. 105, N 46. – P. 11439–11446.
Subramanian V., Wolf E.E., Kamat P.V. Influence of metal/metal ion concentration on the photocatalytic activity of TiO2–Au composite nanoparticles // Langmuir. – 2003. – V. 19, N 2. – P. 469–474.
Furube A., Du L., Hara K. et al. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles // J. Amer. Chem. Soc. – 2007. – V. 129, N 48. – P. 14852–14853.
Kawahara T., Soejima T., Mitsui T. et al. Photoinduced dissolution and redeposition of Au nanoparticles supported on TiO2 // J. Colloid Interface Sci. – 2005. – V. 286, N 2. – P. 816–819.
Dolamic I., Gautier C., Boudon J. et al. Adsorption of thiol-protected gold nanoparticles on TiO2 and their behavior under UV light irradiation // J. Phys. Chem. C. – 2008. – V. 112, N 15. – P. 5816–5824.
Soejima T., Tada H., Kawahara T., Ito S. Formation of Au nanoclusters on TiO2 surfaces by a two-step method consisting of Au(III)-complex chemisorption and its photoreduction // Langmuir. – 2002. – V. 18, N 11. – P. 4191–4194.
Tanahashi I., Iwagishi H., Chang G. Localized surface plasmon resonance sensing properties of photocatalytically prepared Au/TiO2 films // Mater. Lett. – 2008. – V. 62, N 17–18. – P. 2714–2716.
Ning T., Zhou Y., Shen H. et al. Nonlinear optical properties of Au/ZnO nanoparticle arrays // Appl. Surf. Sci. – 2009. – V. 254, N 1–2. – P. 1900–1903.
Lee M.-K., Kim T.G., Kim W., Sung Y.-M. Surface plasmon resonance (SPR) electron and energy transfer in noble metal-zinc oxide composite nanocrystals // J. Phys. Chem. C. – 2008. – V. 112, N 27. – P. 10079–10082.
Haldar K.K., Sen T., Patra A. Au@ZnO core-shell nanoparticles are efficient energy acceptors with organic dye donors // J. Phys. Chem. C. – 2008. – V. 112, N 31. – P. 11650–11656.
Shan G., Wang S., Fei X. et al. Heterostructured ZnO/Au nanoparticles-based resonant Raman scattering for protein detection // J. Phys. Chem. B. – 2009. – V. 113, N 5. – P. 1468–1472.
Yang L., Ruan W., Jiang X. et al. Contribution of ZnO to charge-transfer induced surface-enhanced Raman scattering in Au/ZnO/PATP assembly // J. Phys. Chem. C. – 2009. – V. 113, N 1. – P. 117–120.
Shan G., Zhong M., Wang S. et al. The synthesis and optical properties of the heterostructured ZnO/Au nanocomposites // J. Colloid Interface Sci. – 2008. – V. 326, N 2. – P. 392–395.
Chen B., Zhang H., Du N. et al. Hybrid nanostructures of Au nanocrystals and ZnO nanorods: Layer-by-layer assembly and tunable blue-shift band gap emission // Mater. Res. Bull. – 2009. – V. 44, N 4. – P. 889–892.
Stroyuk A.L., Shvalagin V.V., Raevskaya A.E. et al. Photochemical formation of semiconductor nanostructures // Theor. Exp. Chem. – 2008. – V. 44, N 4. – P. 199–220.
Kamat P.V., Shanghavi B. Interparticle electron transfer in metal/semiconductor composites. Picosecond dynamics of CdS-capped gold nanoclusters // J. Phys. Chem. B. – 1997. – V. 101, N 39. – P. 7675–7679.
Chen W.-T., Yang T.-T., Hsu Y.-J. Au?CdS core-shell nanocrystals with controllable shell thickness and photoinduced charge separation property // Chem. Mater. – 2008. – V. 20, N 23. – P. 7204–7206.
Sun L., Wei G., Song Y. et al. Solution-phase synthesis of Au@ZnO core-shell composite // Mater. Lett. – 2006. – V. 60, N 9–10. – P. 1291–1295.
Raevskaya A.E., Korzhak A.V., Stroyuk A.L., Kuchmiy S.Ya. Phocatalysis by ZnS nanoparticles of the formation of ZnS/Au heterostructure in the reduction of complex ions of gold // Theor. Exp. Chem. – 2005. – V. 41, N 6. – P. 359–364.
Stroyuk A.L., Raevskaya A.E., Korzhak A.V., Kuchmiy S.Ya. Zink sulfide nanoparticles: Spectral properties and photocatalytic activity in metals reduction reactions // J. Nanopart. Res. – 2007. – V. 9, N 6. – P. 1027–1039.
Stroyuk A.L., Shvalagin V.V., Kuchmiy S.Ya. Photochemical synthesis and optical properties of binary and ternary metal-semiconductor composites based on zinc oxide nanoparticles // J. Photochem. Photobiol. A. – 2005. – V. 173, N 2. – P. 185–194.
Henglein A. Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition // J. Phys. Chem. – 1993. – V. 97, N 21. – P. 5457–5471.
Njoki P.N., Lim I-I. S., Mott D. et al. Size correlation of optical and spectroscopic properties for gold nanoparticles // J. Phys. Chem. C. – 2007. – V. 111, N 40. – P. 14664–14669.
Henglein A. Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: Optical spectrum, controlled growth, and some chemical reactions // Langmuir. – 1999. – V. 15, N 20. – P. 6738–6744.
Foss C.A., Hornyak G.I., Stockert J.A., Martin C.R. Template-synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape // J. Phys. Chem. – 1994. – V. 98, N 11. – P. 2963–2971.
Link S., El-Sayed M.A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles // J. Phys. Chem. B. – 1999. – V. 103, N 21. – P. 4212–4217.
Seshadri R., Subbanna G.M., Vijayakrishnan V. et al. Growth of nanometric gold particles in solution phase // J. Phys. Chem. – 1995. – V. 99, N 15. – P. 5639–5644.
Audebrand N., Auffr?dic J.-P., Lou?r D. X-ray diffraction study of the early stages of the growth of nanoscale zinc oxide crystallites obtained from thermal decomposition of four precursors. General concepts on precursor-dependent microstructural properties // Chem. Mater. – 1998. – V. 10, N 9. – P. 2450–2461.
Guo L., Yang S. Synthesis and characterization of poly (vinylpyrrolidone)-modified zinc oxide nanoparticles // Chem. Mater. – 2000. – V. 12, N 8. – P. 2268–2274.
Leff D.V., Ohara P.C., Heath J.R., Gelbart W.M. Thermodynamic control of gold nanocrystal size: Experiment and theory // J. Phys. Chem. – 1995. – V. 99, N 18. – P. 7036–7041.
Fonoberov V.A., Balandin A.A. Radiative lifetime of excitons in ZnO nanocrystals: The dead-layer effect // Phys. Rev. B. – 2004. – V. 70, N 1. – P. 195410 (1–5).
Wood A., Giersig M., Hilgendorff M. et al. Size Effects in ZnO: The Cluster to Quantum Dot Transition // Aust. J. Chem. – 2003. – V. 56, N 10. – P. 1051–1057.
Wang Y.S., Thomas P.J., O`Brien P. Nanocrystalline ZnO with ultraviolet luminescence // J. Phys. Chem. B. – 2006. – V. 110, N 9. – P. 4099–4104.
Liu C.Y., Bard A.J. Effect of excess charge on band energetics (optical absorption edge and carrier redox potentials) in small semiconductor particles // J. Phys. Chem. – 1989. – V. 93, N 8. – P. 3232–3237.
Kamat P.V., Dimitrijevic N.M., Nozik A.J. Dynamic Burstein-Moss shift in semiconductor colloids // J. Phys. Chem. – 1989. – V. 93, N 8. – P. 2873–2875.
Shvalagin V.V., Stroyuk A.L., Kuchmiy S.Ya. Photochemical synthesis of ZnO/Ag nanocomposites // J. Nanopart. Res. – 2007. – V. 9, N 3. – P. 427–440.
Copyright (©) 2010 O. L. Stroyuk, V. V. Shvalagin, I. Е. Kotenko, S. Ya. Kuchmiy, A. G. Derzhypolskiy, D. A. Melenevskiy
This work is licensed under a Creative Commons Attribution 4.0 International License.