Study on Interaction between Lithium Compounds and Niobium Pentaoxide under Mechanochemical Treatment
Abstract
References
Niederberger M., Pinna N., Polleux J., Antonietti M. A general soft-chemistry route to perovskites and related materials: Synthesis of BaTiO3, BaZrO3 and LiNbO3 particles. Angew. Chem. Int. Ed. 2004. 43. 2270–2273.
Swaan H.M., Li Y., Seshan K. et. al. The oxidative coupling of methane and oxidative dehydrogenation of ethane over a niobium promoted lithium doped magnesium oxide catalyst. Catal. Today. 1993. 16. 537–546.
Inoue Y., Watanabe Y. Use of LiNbO3 for design of device-type catalysts with activity controllable functions. Catal. Today. 1993. 16. 487–494.
Xiaoyan L., Kenji K., Kazuya T. et.al. Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect . Appl. Phys. Lett. 2007. 91. 44101–44101.
Giocordi J.L., Rohrer G.S. Spatially selective photochemical reduction of silver on the surface of ferroelectric barium titanate. Chem. Mater. 2001. 13. 241–245.
Zielinska B., Borowiak-Palen E., Kalenzuk R.J. Preparation and characterization of lithium niobate as a novel photocatalyst in hydrogen generation. J. Phys. Chem. Solids. 2008. 69. 36–242.
Su T. T., Jiang H., Gong H. et. al. Preparation of nanocrystalline lithium niobate powders at low temperature . Cryst. Res. Technol. 2010. 45. . 977–982.
Liu M., Xue D., Luo C. Facile synthesis of lithium niobate squares by a combustion method. J. Am. Ceram. Soc. 2006. 89. 1551–1556.
Liu M., Xue D. An efficient approach for the direct synthesis of lithium niobate powders . Solid State Ionics. 2006. 177. 275–280.
Bhagavannarayana G., Ananthamurthy R.V., Budakoti G.C. et .al. A study of the effect of annealing on Fe-doped LiNbO3 by HRXRD, XRT and FTIR . J. Appl. Cryst. 2005. 38. 768–771.
Kominami H., Inoue M., Inui T. Formation of niobium double oxides by the glycothermal method. Catal. Today. 1993. 16. 309–317.
Camargo E.R., Kakuyama M. Low temperature synthesis of lithium niobate powders based on water-soluble niobium malato complexes // Solid State Ionics. – 2002. – V. 151. – P. 423–418.
Wang L.H., Yuan D.R., Duan X.L. et.al. Synthesis and characterization of the lithium niobate powders by sol-gel method // Cryst. Res. Technol. – 2007. – V. 42. – P. 321–324.
Indris S., Bork D., Heitjans P. Nanocrystalline oxide ceramics prepared by high-energy ball milling // J. Mater. Synth. Process. – 2000. – V. 8. – P. 245–250.
Stojanovic B.D. Mechanochemical synthesis of ceramic powders with perovskite structure // J. Mater. Process. Technol. – 2003. – V. 143–144. – P. 78–81.
Rojac T., Kosec M., Malic B., Holc J. The application of milling map in the mechanochemical synthesis of ceramic oxides // J. Eur. Ceram. Soc. – 2006. – V. 26. – P. 3711–3716.
Rojac T., Kosec M., Malic B., Holc J. The mechanochemical synthesis of NaNbO3 using different ball-impacts energies // J. Am. Ceram. Soc. – 2008. – V. 91. – P. 1559–1565.
Rojac T., Bencan A., Ursic H. et.al. Synthesis of a Li- and Ta-modified (K,Na)NbO3 solid solution by mechanochemical activation // J. Am. Ceram. Soc. – 2008. – V. 91. – P. 3789–3791.
Baran E.J., Botto I.L., Muto F. et. al. Vibrational spectra of the ilmenite modifications of LiNbO3 and NaNbO3 // J. Mater. Sci. Lett. – 1986. – V. 5. – P. 671–672.
Zeng H.C., Tung S.K. Synthesis of lithium niobate gels using a metal alkoxide−metal nitrate precursor // Chem. Mater. – 1996. – V. 8. – P. 2667–2672.
Хайнике Г. Трибохимия. – Москва: Мир, 1977. – 582 с.
Фенелонов В.Б. Введение в физическую химию формирования супрамолекулярной структуры адсорбентов и катализаторов. – Новосибирск: Изд-во СО РАН, 2004. – 440 с.
Recommendations for the characterization of porous solids. Technical Report // Pure Appl. Chem. –1994. – V. 66. – P. 1739–58.
Мчедлов-Петросян М.О., Лебідь В.І., Глазкова О.М. та ін. Колоїдна хімія. – Харків: Фоліо, 2005. – 304 с.
Copyright (©) 2012 V. V. Sydorchuk, S. V. Khalameida, V. A. Zazhigalov
This work is licensed under a Creative Commons Attribution 4.0 International License.