Chemistry, Physics and Technology of Surface, 2010, 1 (2), 148-165.

The Particle Morphology Effect of Atmospheric Aerosols on the Interaction Kinetics with Volatile Impurities



V. I. Bogillo

Abstract


The analysis of solid particle morphology effect for atmospheric aerosols on the uptake coefficients with volatile impurities has been performed for those determined in the laboratory experiments as well as of the effect on the rate coefficients used in the transport atmospheric models for fate of the impurities in the heterogeneous processes. The equations for correct determination of the uptake coefficients from dependence of observable rate and uptake coefficients on the substrate mass in the flow reactors have been proposed. It was demonstrated that most of mineral and carbon aerosols in the atmosphere are the aggregates of nanoparticles or the particles with internal nanopores. Because of this, the use of impermeable spherical particles approximation to these particles leads to underestimation of heterogeneous fate rate for the impurities from the atmosphere. The possibility for acceleration of the reactions following via Langmuir-Hinshelwood mechanism is found through interaction of the impurities with nanopore walls in the atmospheric particles and formation of stable adsorption complexes on the surface.

Full Text:

PDF (Русский)

References


Sander S.P., Friedl R.R., Golden D.M. et al. Chemical kinetics and photochemical data for use in atmospheric studies. – Pasadena, CA, USA: Jet Propulsion Laboratory, 2006. – JPL Publication 06–2. Evaluation Number 15. – 522 p. Online: http://jpldataeval.jpl.nasa.gov.

Crowley J.N., Ammann M., Cox R.A. et al. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates // Atmos. Chem. Phys. Discuss. – 2010. – V. 10, N 2. – P. 5233–5564.

Богилло В.И. Влияние состава минеральных аэрозолей на кинетику гетерогенного стока летучих примесей из атмосферы // Химия, физика и технология поверхности. – 2010. – Т. 1, № 1. – С. 38–49.

Underwood G.M., Li P., Usher C.R., Grassian V.H. Determining accurate kinetic parameters of potentially important heterogeneous atmospheric reactions on solid particle surfaces using a Knudsen cell reactor // J. Phys. Chem. A. – 2000. – V. 104, N 4. – P. 819–829.

Karagulian F. The heterogeneous interaction of trace gases on mineral dust and soot: Kinetics and mechanism: PhD thesis: No. 3422. – Lausanne, Switzerland: EPFL, 2006. – 202 p.

Keyser L.F., Moore S.B., Leu M.-T. Surface reaction and pore diffusion in flow-tube reactors // J. Phys. Chem. – 1991. – V. 95. – P. 5496–5502.

Богилло В.И. Кинетика реакций летучих примесей с поверхностью компонентов атмосферных аэрозолей // Химия, физика и технология поверхности. – 2009. – № 15. – С. 4–14.

Thiele E.W. Relation between catalytic activity and size of particles // Ind. Eng. Chem. – 1939. – V. 31. – P. 916–920.

Cunningham R.E., Williams R.J.J. Diffusion in Gases and Porous media. – New York: Plenum Press, 1980. – 278 p.

Moldrup P., Olesen T., Rolston D.E., Yamaguchi T. Modeling diffusion and reaction in soil: VII. Predicting gas and ion diffusivity in undisturbed and sieved soils // Soil. Sci. – 1997. – V. 162. – P. 632–640.

Krueger B.J., Grassian V.H., Cowin J.P., Laskin A. Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle morphology // Atmos. Environ. – 2004. – V. 38. – P. 6253–6261.

Al-Abadleh H.A., Kreuger B.J., Ross J.L., Grassian V.H. Phase transitions in calcium nitrate thin film // Chem. Commun. – 2003. – V. 22 – P. 2796–2797.

Diamond S. Pore size distributions in clays // Clays Clay Miner. – 1970. – V. 18. – P. 7–23.

Price G.J., Ansari D.M. An inverse gas chromatography study of calcinations and surface modification of kaolinite clays // Phys. Chem. Chem. Phys. – 2003. – V. 5. – P. 5552–5557.

Pokrovskiy V.A., Bogillo V.I., Dabrowski A. Adsorption and chemisorption of organic pollutants on the solid aerosols surface // Adsorption and its Application in Industry and Environmental Protection / Ed. A. Dabrowski. – Amsterdam: Elsevier, 1999. – P. 571–634.

Rockne K.J., Taghon G.L., Kosson D.S. Pore structure of soot deposits from several combustion sources // Chemosphere – 2000. – V. 41. – P. 1125-1135.

Xiong C., Friedlander S.K. Morphological properties of atmospheric aerosol aggregates // Proc. Nat. Acad. Sci. U.S.A. – 2001. – V. 98, N 21. – P. 11851–11856.

Alastuey A., Querol X., Castillo S. et al. Characterization of TSP and PM2.5 at Izana and St. Cruz de Tenerife (Canary Islands, Spain) during a Saharan dust episode (July 2002) // Atmos. Environ. – 2005. – V. 39. – P. 4715–4728.

Ивлев Л.С., Довгалюк Ю.А. Физика атмосферных аэрозольных систем. – СПб.: НИИХ СПбГУ, 1999. – 184 c.

DeCarlo P.F., Slowik J.G., Worsnop D.R. et al. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part. 1: Theory // Aerosol Sci. Technol. – 2004. – V. 36. – P. 1185–1205.

Murr L.E., Garza K.M. Natural and anthropogenic environmental nanoparticulates: Their microstructural characterization and respiratory health implications // Atmos. Environ. – 2009. – V. 43, N 17. – P. 2683–2692.

Posfai M., Anderson J.R., Buseck P.R., Sievering H. Soot and sulfate aerosol particles in the remote marine troposphere // J. Geophys. Res. – 1999. – V. 104, N 17. – P. 21685–21693.

Jeong G.Y., Chun Y. Nanofiber calcite in Asian dust and its atmospheric roles // Geophys. Res. Lett. – 2006. – V. 33. – doi: 10.1029/2006GL028280.

Zhang R., Khalizov A.F., Pagels J. et al. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing // Proc. Nat. Acad. Sci. U.S.A. – 2008. – V. 105, N 30. – P. 10291–10296.

Murr L.E., Soto K.F., Garza K.M. et al. Combustion-generated nanoparticulates in the El Paso, TX, USA, Juarez, Mexico Metroplex: their comparative characterization and potential for adverse health effects // Int. J. Environ. Res. Public Health. – 2006. – V. 3, N 1. – P. 48–66.

Shandilya K.K., Kumar A. Morphology of single inhalable particle inside public transit biodiesel fueled bus // J. Environ. Sci. – 2010. – V. 22, N 2. – P. 263–270.

Mogo S., Cachorro V.E., de Frutos A.M. Morphological, chemical and optical characterization of aerosols in the urban atmosphere of Valladolid // Atmos. Chem. Phys. – 2005. – V. 5. – P. 2739–2748.

Stoeckli F., Centeno T.A. On the determination of surface areas in activated carbons // Carbon. – 2005. – V. 43, N 6. – P. 1184–1190.

Aylmore L.A.G. Gas adsorption in clay mineral systems// Clays Clay Miner. – 1974. – V. 22. – P. 175–183.

Blum A.E., Eberl D.D. Measurement of clay surface area by polyvinylpyrrolidone (PVP) sorption and its use for quantifying illite and smectite abundance // Clays Clay Miner. – 2004. – V. 52, N 5. – P. 589–602.

Богилло В.И. Адсорбционные равновесия летучих органических соединений на поверхности компонентов атмосферных аэрозолей // Химия, физика и технология поверхности. – 2008. – № 14. – С. 129–139.

Derouane E.G., Andre J.-M., Lukas A.A. Surface curvature effects in physadsorption and catalysis by microporous solids and molecular sieves // J. Catal. – 1988. – V. 110, N 1. – P. 58–73.

Singh G.S., Lal D., Tripathi V.S. Study of microporosity of active carbon spheres using inverse gas chromatographic and static adsorption techniques // J. Chromatogr. A. – 2004. – V. 1036. – P. 189–195.

Авгуль Н.Н., Киселев А.В., Пошкус Д.П. Адсорбция газов и паров на однородных поверхностях. – Москва: Химия, 1975. – 384 c.




Copyright (©) 2010 V.I. Bogillo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.