Chemistry, Physics and Technology of Surface, 2012, 3 (3), 300-306.

Nanoporous Structure of Adsorbents Obtained by Alkali Activation of Different Rank Coals



Yu. V. Tamarkina, V. A. Kucherenko, T. G. Shendrik

Abstract


Porous structure of adsorbents obtained by alkali activation of Donbass different rank coals, was studied by low temperature adsorption of nitrogen. It was found the increase in carbon content (Cdaf) from 80.0 to 95.2% causes the increase of adsorbents yield (from 53.9 to 83.5%), the decrease of SBET (from 1560 to 306 m2/g); VΣ (from 0.71 to 0.15 cm3/g); Vmi (from 0.51 to 0.11 cm3/g); volume of subnanopore (from 0.46 to 0.06 cm3/g). By DFT methods, the most narrow micropore size distribution was shown to possess adsorbents from middle rank coals (Cdaf = 86–90%). The maximum subnanopore portion (66–81% VΣ = 0.46 cm3/g at SBET = 1045 m2/g) is inherent to adsorbents from high rank coal (Cdaf = 91.2%).

Full Text:

PDF (Русский)

References


Marsh, H., Rodriguez-Reinoso, F. Activated carbon. Elsevier: Amsterdam, 2006.

Yoshizawa, N., Maruyama, K., Yamada, Y. et al. Fuel. 2002. 81. 1717.

Lillo-Ródenas, M.A., Marco-Lozar, J.P., Cazorla-Amorós, D., Linares-Solano, A. J. Anal. Appl. Pyrolysis. 2007. 80. 166.

Evans, M.J.B., Halliop, E., MacDonald, J.A.F. Carbon. 1999. 37. 269.

Zhu, Y., Murali, S., Stoller, M.D. et al. Science. 2011. 332. 1537.

Largeot, C., Portet, C., Chmiola, J. et al. J. Am. Chem. Soc. 2008. 130. 2730.

Bansal, R.C., Goyal, M. Activated Carbon Adsorption. Taylor and Francis Group: Boca Raton, 2005.

Jordá-Beneyto, M., Suárez-García, F., Lozano-Castelló, D. et al. Carbon. 2007. 45. 293.

Menon, V.C., Komarneni, S. J. Porous Materials. 1998. 5. 43.

Dai, X.D., Liu, X.M., Qian, L. et al. Energy Fuels. 2008. 22. 3420.

Conway, B.E. Electrochemical Supercapa-citors – Scientific Fundamentals and Techno-logical Applications. Kluwer Academic, Plenum: New York, 1999.

Fierro, V., Torne-Fernandez, V., Celzard, A. Microporous Mesoporous Materials. 2007. 101. 419.

Krol, M., Gryglewicz, G., Machnikowski, J. Fuel Processing Technol. 2011. 92. 158.

Lu, C., Xu, S., Liu, C. J. Anal. Appl. Pyrolysis. 2010. 87. 282.

Kartel, M.T., Sych, N.V., Tsyba, M.M., Strelko, V.V. Carbon. 2006. 44. 1019.

Raymundo-Pinero, E., Azais, P., Cazorla-Amoros, D. et al. Carbon. 2005. 43. 786.

Guy, P.J., Perry, G.J. Fuel. 1992. 71. 1083.

Amarasekera, G., Scarlett, M.J., Mainwaring, D.E. Carbon. 1998. 36. 1071.

Кучеренко В.А., Шендрик Т.Г., Хабарова Т.В., Тамаркина Ю.В. Влияние температуры химической активации на формирование пористой структуры адсорбентов из бурого угля // Журн. Сиб. фед. университета. Химия. – 2009. – Т. 2(3). – С. 223–231.

Kucherenko, V.A., Shendrik, T.G., Tamarkina, Yu.V., Mysyk, R.D. Carbon. 2010. 48. 4556.

Nowicki, P., Pietrzak, R., Wachowska, H. Fuel. 2008. 87. 2037.

Mikova, N.M., Chesnokov, N.V., Kuznetsov, B.N. J. Sib. Fed. University. 2009. 1. 3.

Тамаркина Ю.В., Шендрик Т.Г., Галушко Л.Я., Кучеренко В.А. Термолиз ископаемых углей, модифицированных смесью HNO3-Ac2O // Химия твердого топлива. – 2002. – № 4. – Р. 57–65.

Brunauer, S., Emmett, P.H., Teller, E. J. Am. Chem. Soc. 1938. 60. 309.

Barret, E.P., Joyner, L.C., Halenda, P.P. J. Am. Chem. Soc. 1951. 73. 373.

Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V. Langmuir. 2000. 16. 2311.

Ravikovitch, P.I., Neimark, A.V. Langmuir. 2006. 22. 11171.

Dubinin, M.M. Carbon. 1989. 27. 457.

Xia, K., Gao, Q., Wu, C. et al. Carbon. 2007. 45. 1989.

Chmiola, J., Yushin, G., Gogotsi, Y. et al. Science. 2006. 313. 1760.

Саранчук В.И., Айруни А.Т., Ковалев К.Е. Надмолекулярная структура и свойства углей. – Киев: Наукова думка, 1988. – 192 с.




Copyright (©) 2012 Yu. V. Tamarkina, V. A. Kucherenko, T. G. Shendrik

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.