Chemistry, Physics and Technology of Surface, 2012, 3 (3), 330-334.

Photoelectrochemical Properties of Nanostructured Photoelectrodes TiO2/CdSe for Systems of Hydrogen Production



I. A. Slobodyanyuk, I. A. Rusetskii, G. Ya. Kolbasov

Abstract


Semiconductor heterostructures NT-TiO2/CdSe have been obtained by supporting semiconductor films CdSe on a Ti-substrate with the generated layer of nanotubes TiОby potentiostatic anodic polarisation. Photoelectrochemical processes on polycrystalline NT-TiO2/CdSe-photoelectrodes have been studied. The reasons of increase in efficiency of phototransformation after inoculation of a surface of photoelectrodes by Pt and Zn nanoparticles have been analyzed. It has been shown that nanostructurization of electrodes leads to increase in their photosensitivity what is connected with decrease in surface recombination speed. Overall efficiency of photoanodes studied in a photoelectrochemical cell with hydrogen accumulation has been examined.

Full Text:

PDF (Русский)

References


Solonin Yu.M., Kolbasov G.Ya., Rusetskii I.A. et al. Hydrogen storage in metal hydride under action of sunlight // Fuel Cell Technologies: State and Perspectives. Ed. by N. Sammes, A. Smirnova, O. Vasylyev. NATO Science Series. II. Mathematics, Physics and Chemistry. – 2005. – V. 202. – P. 193–198.

Колбасов Г.Я., Щербакова Л.Г. Фундаментальні проблеми водневої енергетики / Ред. Походенко В.Д., Скороход В.В., Солонін Ю.М. – Київ: КІМ, 2010. – 495 с.

Raja K.S., Misra M., Mahajan V.K. et al. Photo-electrochemical hydrogen generation using band-gap modified nanotubular titanium oxide in solar light // J. Power Sources. – 2006. – V. 161. – P. 1450–1457.

Mor G.K., Varghese O.K., Paulose M. et al. Fabrication of tapered, conical-shaped titania nanotubes // J. Mater. Res. – 2003. – V. 18, N 11. – P. 2588–2593.

Ruan C., Paulose M., Varghese O.K. et al. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte // J. Phys. Chem. B. – 2005. – V. 109, N 33. – P. 15754–15759.

Macak J.M., Tsuchiya H., Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium // Angew. Chem. Int. Ed. – 2005. – V. 44, N 14. – P. 2100–2102.

Parkhutik V.P., Shershulsky V.I. Theoretical modelling of porous oxide growth on aluminium // J. Phys. D: Appl. Phys. – 1992. – V. 25, N 8. – P. 1258–1263.

Siejka J., Ortega C. An O18 study of field-assisted pore formation in compact anodic oxide-films aluminium // J. Electrochem. Soc. – 1977. – V. 124, N 6. – P. 883–891.

Thompson G.E. Porous anodic alumina: fabrication, characterization and applications // Thin Solid Films. – 1997. – V. 297, N 1–2. – P. 192–201.

Mor G.K., Varghese O.K., Paulose M. et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications // Solar Energy Mat. Solar Cells. – 2006. – V. 90. – P. 2011–2075.

Shcherbakova L.G., Dan`ko D.B., Muratov V.B. et al. Metal hydride use for solar energy accumulation // NATO Security through Science Series – A: Chemistry and Biology. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials / Ed. by Veziroglu T.N., Zaginaichenko S.Yu., Schur D.V. et al. – 2007. – P. 699–706.

Колбасов Г.Я., Городыский А.В. Процессы фотостимулированного переноса заряда в системе полупроводник–электролит. – Киев: Наукова думка, 1993. – 192 с.

Слободянюк И.А., Щербакова Л.Г., Колбасов Г.Я. и др. Фоточувствительность анодов на основе поликристаллических плёнок CdSe и CdSe0.65Te0.35 // Укр. хим. журнал. – 2010. – Т. 76, № 6. – С. 98–100.




Copyright (©) 2012 I. A. Slobodyanyuk, I. A. Rusetskii, G. Ya. Kolbasov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.