Chemistry, Physics and Technology of Surface, 2013, 4 (1), 78-91.

Laser Desorption/Ionization of Fullerenes: Experimental and Theoretical Study



DOI: https://doi.org/10.15407/hftp04.01.078

V. O. Pokrovskiy, A. G. Grebenyuk, E. M. Demianenko, V. S. Kuts, O. B. Karpenko, S. V. Snegir, N. T. Kartel

Abstract


Experimental and theoretical aspects of fullerene C60 ionization, fragmentation and aggregation are discussed by laser desorption/ionization mass spectrometry and quantum chemistry. Ion formation and chemical reactions of fullerene molecule depend essentially upon the nature and properties of the surface where it is deposited as well as upon the conditions of deposition and the mechanisms of ion-molecular reactions which occur in the ion source of mass spectrometer.It has been shown that the energy of single photon is enough to ionize an adsorbed fullerene molecule due to transition of single electron to the Fermi level of support and consequent overcoming the barrier of image forces. Nevertheless, this mechanism cannot explain the observed mass spectra completely, in particular the high level of fullerene fragmentation, because of lack of photon energy. Plasmon resonance resulted from multi-photon excitation of fullerene molecule in condensed state is the initial stage and the main mechanism of energy supply for fullerene laser induced ionization, fragmentation, aggregation, and chemical reactions which take place in both adsorbed state and ion plum. Explanation of observed experimental results concerning fullerene fragmentation and aggregation is proposed based on the results of quantum chemical calculations and on heuristic considerations.

Full Text:

PDF

References


1. Yoshida Z., Osawa E. Aromaticity. (Kyoto: Kagakudojin, 1971).

2. Kroto H.W., Heath J.R., O'Briyen S.C., Curl R.F., Smalley R.E. C60: Buckminster-fullerene. Nature. 1985. 318: 162. https://doi.org/10.1038/318162a0

3. Sedo O., Alberti M., Janca J., Havel J. Laser desorption-ionization time of flight spectrometry of various carbon materials. Carbon. 2006. 44(5): 840. https://doi.org/10.1016/j.carbon.2005.10.025

4. Snegir S.V., Gromovyi T.Yu., Pokrovskiy V.O. Laser desorption/ionization mass spectrometry of fullerene C60 deposited onto the polished steel and silicon targets. Metalphys. Newest Techn. 2006. 28: 255.

5. Hathiramani D., Scheier P., Bräuning H., Trassl R., Salzborn E., Presnyakov L.P., Narits A.A., Uskov D.B. Investigation of fullerene ions in crossed-beams experiments. Nuclear Instruments and Methods in Physics Research Section B. 2003. 212: 67. https://doi.org/10.1016/S0168-583X(03)01481-2

6. Paton B.E., Moskalenko V.F. Chekman I.S. Movchan B.O. Nanoscience and nanotechnology: technical, medical and social aspects. J. NAS Ukraine. 2009. 6: 18. [in Ukrainian].

7. Chekman I.S. Nanopharmacology: view of the problem. J. NAS Ukraine. 2009. 1: 21. [in Ukrainian].

8. Karpenko A.B., Kuts V.S., Snegir S.V., Pokrovskiy V.A. Regularities in fullerene C60 fragmentation according to laser-desorption mass spectrometric and quantum chemical data. Ukr. J. Phys. 2012. 57(7): 773.

9. Fesenko T.V., Surovtseva N.I., Smirnova N.P., Snegir S.V. Enhanced intensity of ion current in mass-spectrometry with laser desorption/ionization under effect of surface plasmon resonance. In: Actual Problems of Surface Chemistry and Physics. All-Ukr. Conf. with Intern. Participation (May 11–13, 2011, Kyiv). P. 300.

10. Becke A.D. Density functional thermo-chemistry. III. The role of exact exchange. J. Chem. Phys. 1993. 98: 5648. https://doi.org/10.1063/1.464913

11. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988. 37: 785. https://doi.org/10.1103/PhysRevB.37.785

12. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. General atomic and molecular electronic-structure system: a review. J. Comput. Chem. 1993. 14(11): 1347. https://doi.org/10.1002/jcc.540141112

13. Yoo R.K., Ruscic B., Berkowitz J. Vacuum ultraviolet photoionization mass spectrometric study of C60. J. Chem. Phys. 1992. 96: 911. https://doi.org/10.1063/1.462112

14. Brink C., Andersen L.H., Hvelplund P., Mathur D., Voldstad J.D. Laser photodetachment of C-60(-) and C–70(-) ions cooled in a storage ring. Chem. Phys. Lett. 1996. 233(1–2): 52.

15. Hedberg K., Hedberg L., Bethune D.S., Brown C.A., Dorn H.C., Johnson R.D., DE Vries M. Bond lengths in free molecules of buckminsterfullerene, C60, from gas-phase electron diffraction. Science. 1991. 254(5030): 410. https://doi.org/10.1126/science.254.5030.410

16. Murry R.L., Strout D.L., Odom G.K., Scuseria G.E. Role of sp3 carbon and 7–membered rings in fullerene annealing and fragmentation. Nature. 1993. 366: 665. https://doi.org/10.1038/366665a0

17. Murry R.L., Strout D.L. Theoretical studies of fullerene annealing and fragmentation. Int. J. Mass Spectrom. Ion Processes. 1994. 138: 113. https://doi.org/10.1016/0168-1176(94)04037-0

18. Bates K.R., Scuseria G.E. Why are buckyonions round? Theor. Chem. Acc. 1998. 99(1): 29. https://doi.org/10.1007/s002140050299

19. Murry R.L., Strout D.L., Scuseria G.E. Theoretical studies of fullerene annealing and fragmentation. Int. J. Mass Spectrom. Ion Processes.1994. 138: 113. https://doi.org/10.1016/0168-1176(94)04037-0

20. Zhidomirov G.M., Bagaturiants A.A., Abronin I.A. Applied Quantum Chemistry. Calculations on Reactivity and Mechanisms of Chemical Reactions. (Moscow: Khimiya, 1979). [in Russian].

21. Wales D.J., Berry R.S. Limitations of the Murrell-Laidler theorem. J. Chem. Soc., Faraday Trans. 1992. 88(4): 543. https://doi.org/10.1039/FT9928800543

22. Fukui K. The path of chemical reactions – the IRC approach. Acc. Chem. Res. 1981. 14(12): 363. https://doi.org/10.1021/ar00072a001

23. Saito R., Dresselhaus G., Dresselhaus M.S. Topological defects in large fullerenes. Chem. Phys. Lett. 1992. 195(5–6): 537. https://doi.org/10.1016/0009-2614(92)85559-S

24. Slanina Z. Teoretické aspekty fenoménu chemické isomerie. (Praha: Academia, 1981). [in Czech].




DOI: https://doi.org/10.15407/hftp04.01.078

Copyright (©) 2013 V. O. Pokrovskiy, A. G. Grebenyuk, E. M. Demianenko, V. S. Kuts, O. B. Karpenko, S. V. Snegir, N. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.