Chemistry, Physics and Technology of Surface, 2013, 4 (1), 113-119.

Hybrid Inorganic-Organic Acid Materials: Characterization and Catalytic Performance in Ethyl Tert-Butyl-Ether Synthesis



DOI: https://doi.org/10.15407/hftp04.01.113

T. G. Serebrii, N. V. Vlasenko, Yu. N. Kochkin, P. E. Strizhak

Abstract


We present a study on physical-chemical properties of hybrid inorganic-organic acid materials and their catalytic performance in ethyl tert-butyl ether synthesis under both atmospheric and elevated pressure. Such materials are compositions of acid styrene-divinylbenzene copolymer and silica with various (1.5–9.2 wt.%) polymer loadings (loaded resins LR). We have found that LR has better thermal stability compared to that of commercial sulfonic resins. Acidic properties of LR show that the acidity of polymer phase decreases with increasing of polymer loading. Catalytic tests show that under atmospheric pressure ethyl tert-butyl ether synthesis requires a higher acid capacity of LR than that under elevated pressure and proceeds with 100% of selectivity. Under pressure the side reaction of tert-butanol formation occurs and LR samples with higher polymer content (≥ 6.9 wt.%) possess lower conversion but higher selectivity compared to LR with polymer content below 6.9 wt.%.

Full Text:

PDF

References


1. Tanabe K., Hoelderich W.F. Industrial application of solid acid-base catalysts. Appl. Catal. A: Gen. 1999. 181(2): 399. https://doi.org/10.1016/S0926-860X(98)00397-4

2. Shin T., Rong Y., Harmon T., Suffet M. Evaluation of the ımpact of fuel hydrocarbons and oxygenates on groundwater resources. Environ. Sci. Technol. 2004. 38(1): 42. https://doi.org/10.1021/es0304650

3. Ogura T., Sakai Y., Miyoshi A. Koshi M., Philippe D. Modeling of the oxidation of primary reference fuel in the presence of oxygenated octane ımprovers: ethyl tert-butyl ether and ethanol. Energy Fuels. 2007. 21(6) 3233. https://doi.org/10.1021/ef700321e

4. Quitain A., Itoh H., Goto G. Industrial-scale simulation of proposed process for synthesizing ethyl tert-butyl ether from bioethanol. J. Chem. Eng. Jpn. 1999. 32(4): 539. https://doi.org/10.1252/jcej.32.539

5. Parra D., Izquierdo J.F., Cunill F., Tejero J., Fité C., Iborra M., Vila M. Catalytic activity and deactivation of acidic ıon-exchange resins in methyl tert-butyl ether liquid-phase synthesis. Ind. Eng. Chem. Res. 1998. 37(9): 3575. https://doi.org/10.1021/ie980007d

6. Degirmenci L., Oktar N., Dogu G. Product distributions in ethyl tert-butyl ether synthesis over different solid acid catalysts. Ind. Eng. Chem. Res. 2009. 48(5): 2566. https://doi.org/10.1021/ie801508r

7. Harmer M.A., Q. Sun Q. Solid acid catalysis using ion-exchange resins. Appl. Catal. A: Gen. 2001. 221(1–2): 45. https://doi.org/10.1016/S0926-860X(01)00794-3

8. Wight A.P., Davis M.E. Design and preparation of organic-ınorganic hybrid catalysts. Chem. Rev. 2002. 102(10): 3589. https://doi.org/10.1021/cr010334m

9. Vlasenko N.V., Kochkin Yu.N., Topka A.V., Strizhak P.E. Liquid-phase synthesis of ethyl tert-butyl ether over acid cation-exchange inorganic–organic resins. Appl. Catal. A: Gen. 2009. 362(1–2): 82. https://doi.org/10.1016/j.apcata.2009.04.021

10. Hart M., Fuller G., Brown D.R. Dale J.A., Plant S. Sulfonated poly(styrene-co-divinylbenzene) ion-exchange resins: acidities and catalytic activities in aqueous reactions. J. Mol. Catal. A: Chem. 2002. 182–183: 439. https://doi.org/10.1016/S1381-1169(01)00471-X

11. Kapustin G.I., Brueva T.R. A simple method for determination of heat of ammonia adsorption on catalysts from thermodesorption data. Thermochim. Acta. 2001. 379(1–2): 71. https://doi.org/10.1016/S0040-6031(01)00604-9




DOI: https://doi.org/10.15407/hftp04.01.113

Copyright (©) 2013 T. G. Serebrii, N. V. Vlasenko, Yu. N. Kochkin, P. E. Strizhak

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.