Chemistry, Physics and Technology of Surface, 2010, 1 (2), 187-193.

Adsorption and Chemical Transformations of Lidocaine on Fumed Silica Surface



T. V. Kulyk, O. O. Dudik, B. B. Palyanytsya, V. M. Barvinchenko

Abstract


It has been found that the highest adsorption of lidocaine on silica surface is observed at рН~8.1 similar to рКа of lidocaine (рК=7.9), that is in a region of рН optimal for realization of maximum biological effect. The interaction of lidocaine with fumed silica surface has been studied by the temperature-programmed desorption mass spectrometry. Maxima for ions with m/z of 171, 147, 131, 130, 121, 116 on the thermal desorption curves have been observed at the temperature of 220-230°C for the lidocaine sample prepared by the equilibrium adsorption procedure from alkaline medium. That is, under these conditions desorption of lidocaine in molecular form takes place as a result of decomposition of adsorption complex between quaternary ammonium salt of lidocaine and silanol group. The kinetic parameters of decomposition (activation energy, order of reaction, pre-exponential factor) of this adsorption complex on silica surface have been calculated.

Full Text:

PDF (Русский)

References


Альберт А.. Избирательная токсичность. – Москва: Медицина, 1989. – Т. 1. – 400 с.

Машковский М.Д. Лекарственные средства. – Москва: Медицина, 1998. – Ч. 1. – 736 с.

Bagonluri M.T., Woodbury M.R., Reid R.S. et al. Analysis of Lidocaine and its Major Metabolite, Monoethylglycinexylidide, in Elk Velvet Antler by Liquid Chromatography with UV Detection and Confirmation by Electrospray Ionization Tandem Mass Spectrometry // J. Agric. Food Chem. – 2005. – V. 53, N 7. – P. 2386–2391.

Streit F., Niedmann P.D., Shipkova М. et al. Rapid and sensitive liquid chromatography-tandem mass spectrometry method for determination of monoethylglycinexylidide // Clin. Chem. – 2001. – V. 47, N 10. – P.1853–1856.

Fujii T., Kurihara Y. Surface Ionization Organic Mass Spectrometry of Imipramine, Desipramine, Clomipramine, and Lidocaine // Anal. Chem. – 1994. – V. 66, N 11. – P. 1884–1889.

Alimpiev S., Grechnikov A., Sunner J. et al. On the role of defects and surface chemistry for surface-assisted laser desorption ionization from silicon // J. Chem. Phys. – 2008. – V. 128, N 1. – P. 014711–014719.

Кулик Т.В., Барвинченко В.Н., Паляница Б.Б. и др. Исследование взаимодействия коричной кислоты с поверхностью кремнезема методом десорбционной масс-спектрометрии // ЖФХ. – 2007. – V. 81, N 1. – С. 88–95.

Общая органическая химия / Под ред. Д. Бартона, У.Д. Оллиса. – Т. 4. Карбоновые кислоты и их производные. Соединения фосфора / Пер. с англ. / Под ред. О.И. Сазерленда. – Москва: Химия, 1983. – С. 427–430.

McMaster P.D., Noris V.J., Stankard C.E. et al. The Solution Conformation of Lidocaine Analogues // Pharm. Res. – 1991. – V. 8, N 8. – P. 1013–1020.

Waraszkiewicz S.J., Foye W.O. Local Anesthetics. 2-Diethylamino-2’,6’-acylxylidides // J. Med. Chem. – 1976. – V. 19, N 4. – P. 541–544.

Кукушкин М.Л., Хитров Н.К. Общая патология боли. – Москва: Медицина, 2004. – 140 с.

Сборник методических указаний. Измерение концентрации вредных веществ в воздухе рабочей зоны. – Москва: Федеральный центр госсанэпиднадзора Минздрава России. – 2003. – Вып. 38.

Власова Н.Н., Головкова Л.П., Стукалина Н.Г. Адсорбция акридина на поверхности высокодисперсного кремнезема // Химия, физика и технология поверхности. – 2009. – № 15 – C. 93–97.

Spectral Database for Organic Compounds, SDBS / National Institute of Advanced Industrial Science and Technology (AIST) Japan [Electronic resource]. – URL http://riodb01.ibase.aist.go.jp/sdbs/.

Беллами Л. Инфракрасные спектры сложных молекул / Пер.с англ. – Москва: ИЛ, 1963. – 590 с.




Copyright (©) 2010 T. V. Kulyk, O. O. Dudik, B. B. Palyanytsya, V. M. Barvinchenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.