Chemistry, Physics and Technology of Surface, 2013, 4 (3), 266-275.

Photocatalytic Degradation of Dyes in the Presence of Mechanochemically Modified Vanadium and Molybdenum Oxides



V. V. Sydorchuk, S. V. Khalameida, V. O. Zazhigalov, O. A. Khanina

Abstract


Vanadium-molybdenum oxide composition with atomic ratio V/Mo = 0.7:0.3 has been modified by mechanochemical treatment in different media. As a result, changes in the crystal structure, dispersion and surface structure are observed. In general, the properties of the composition are determined by those of the predominant component (V2O5), although the effect of another oxide (MoO3) is revealed. Spectroscopy shows changes in the electronic structure: due to mechanochemical treatment, there is a hypsohromic shift of bands and of the absorption edges of both oxides. Mechanochemical treatment also contributes to the increase in photocatalytic activity of V2O5/MoO3 in the process of dyes degradation in aqueous solution. The samples modified in ethanol possess maximum activity which is associated with an increase in the surface content of the basal plane of vanadium pentoxide.

Keywords


vanadium and molybdenum oxides; mechanochemical treatment; crystal structure; surface structure; electronic structure

Full Text:

PDF (Українська)

References


1. Centi G., Cavani F., Trifiro F. Selective Oxidation by Heterogeneous Catalysis. – New York: Kluwer/Plenum, 2001. – 505 p.

2. Zazhigalov V.A., Khalameida S.V., Litvin N.S., et al. Effect of the mechanochemical treatment of a V2O5/MoO3 oxide mixture on its properties // Kinetics Catal. – 2008. – V.49. – P. 692–701.

3. Eguchi M., Maki F., Kimura H.E., Takahashi K. Lithiation behavior of vanadium molyb-denum oxides // Electrochem. – 2000. – V.68. – P. 474–477.

4. Maia L., Yanga F., Zhaoa Y. et al. Molybdenum oxide nanowires: synthesis and properties // Mater. Today. – 2011. – V. 14. – P. 346–353.

5. Kosova N., Devyatkina E. On mechano-chemical preparation of materials with enhanced characteristics for lithium batteries // Solid State Ionics. – 2004. – V. 172. – P. 181–184.

6. Madhuri K.V., Naidu B.S., Hussain O.M. Optical absorption studies on (V2O5)1−x–(MoO3)x thin films // Mater. Chem. Phys. – 2002. – V. 77. – P. 22–26.

7. Reddy Ch.V.S., Yeo I.-H., Mho Sun-il. Synthesis of sodium vanadate nanosized materials for electrochemical applications // Phys. Chem. Solids. – 2008. – V. 69. – P. 1261–1264 .

8. Mho Sun-il. Quantitative analysis of adsorption and photocatalytic activity of vanadium-oxide gels and nanobelts // J. Korean. Phys. Soc. – 2009. – V. 55. – P. 2447–2450.

9. Fei H.L., Zhou H.J., Wang J.G. et al. Synthesis of hollow V2O5 microspheres and application to photocatalysis // Solid State Sci. – 2008. –V. 10. – P. 1276–1284.

10. Song L.X., Xia J., Dang Z. et al. Formation, structure and physical properties of a series of α-MoO3nanocrystals: from 3D to 1D and 2D // Cryst. Eng. Comm. – 2012. – V. 14. – P. 2675–2682.

11. Vernardoua D., Spanakis E., Kenanakisa G. et al. Hydrothermal growth of V2O5 photoactive films at low temperatures // Mater. Chem. Phys. – 2010. – V. 124. – P. 319–322.

12. Skwarek E., Khalameida S., Janusz W. et al. Influence of mechanochemical activation on structure and some properties of mixed vanadium–molybdenum oxides // J. Therm. Anal. Calorim. – 2011. – V. 106. – P. 881–894.

13. Sydorchuk V., Makota O., Khalameida S. et al. Physical–chemical and catalytic properties of deposited MoO3 and V2O5 // J. Therm. Anal. Calorim. – 2012. –V. 108. –P. 1001–1008.

14. Митченко С.А. Механохимия в гетеро-генном катализе // Теорет. эксперим. химия. – 2007. – Т. 43, № 4. – С. 199–214.

15. Chen F., Zhao J., Hidaka H. Highly selective deethylation of rhodamine B: Adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst // Int. J. Photoenergy. – 2003. – V. 5. – P. 209–217.

16. Fu H., Zhang S., Xu T. et al. Ptotocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products // Environ. Sci. Technol. – 2008. – V. 42. – P. 2085–2091.

17. Wilhelm P., Stephan D. Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres // J. Photochem. Photobiol. A. – 2007. – V. 185. – P. 19–25.

18. Hess C. Direct correlation of the dispersion and structure in vanadium oxide supported on silica SBA-15 // J. Catal. – 2007. – V. 248. – P. 120–123.

19. Weber R.S. Effect of local structure on the UV-Visible absorption edges of molybdenum oxide clusters and supported molybdenum oxides // J. Catal. – 1995. – V. 151. – P. 470–474.

20. Gao X., Bare S.R., Weckhuysen B.M., Wachs I.E. In situ spectroscopic investigation of molecular structures of highly dispersed vanadium oxide on silica under various conditions // J. Phys. Chem. B. – 1998. – V. 102. – P. 10842–10852.

21. Thompson L.P., Yates J.T. Surface science studies of the photocatalytic of TiO2 – New photochemical processes // Chem. Rev. – 2006. – V. 106. – P. 4428–4453.

22. Lazar M.A., Daoud W.A. Selective adsorption and photocatalysis of low-temperature base-modified anatase nanocrystals // RSC Adv. – 2012. – V. 2. – P. 447–452.

23. Gupta V.K., Jain R., Mittal A. et al. Photochemical degradation of the hazardous dye Safranin-T using TiO2catalyst // J. Colloid Interface Sci. – 2007. – V. 309. – P. 464–469.

24. Крылов О.В. Гетерогенный катализ. Москва: Академкнига, 2004. – 679 с.

25. Batzill M. Fundamental aspects of surface engineering of transition metal oxide photocatalysts // Energy Environ. Sci. – 2011. – V. 4. – P. 3275–3286.

26. Brinkley D., Engel T. Evidence for structure sensitivity in the thermally activated and photocatalytic dehydrogenation of 2-propanol on TiO2 // J. Phys. Chem. B – 2000. – V. 104. – P. 9836–9842.

27. Wilson J.N., Idriss H. Structure sensitivity and photocatalytic reactions of semiconductors. Effect of the last layer atomic arrangement // J. Am. Chem. Soc. – 2002. – V. 124. – P. 11284–11285.

28. Молчанов В.В., Плясова Л.М., Гойдин В.В. и др. Новые соединения в системе MoO3–V2O5 // Неорган. материалы. – 1995. –Т. 31. – № 9. – С. 1225–1229.

29. Халамейда С.В., Зажигалов В.А. Механо-химическая модификация V-содержащих катализаторов // Катализ и нефтехимия. – 2003. – Вып. 11. – С. 85–97.

30. Mestl G., K.Srinivasan T.K., Knozinger H. Mechanically activated MoO3. 1. Particle size, crystallinity, and morphology // Langmuir. – 1995. –V. 11. – P. 3027–3034.

31. Литвин Н.С., Халамейда С.В.,   Зажигалов В.А. Влияние механохими-ческой обработки на свойства МоО3 // Доповіді НАН  України. – 2010. – № 9. – C. 108–113.

32. Халамейда С.В., Литвин Н.С., Зажигалов В.О. Модифікування поверхні оксиду молібдену МоО3шляхом його механохімічной обробки // Хімія, фізика та технологія поверхні. – 2010. – Т. 1, № 1. – С. 50–56.

33. Hu C., Wang Y., Tang H. Influence of adsorption on the photodegradation of various dyes using surface bond-conjugated TiO2/SiO2 photocatalyst // Appl. Catal. B. –2001. – V. 35. – P. 95–105.

34. Selishchev D.S., Kolinko P.A., Kozlov D.V. Influence of adsorption on the photocatalytic properties of TiO2/AC composite materials in the acetone and cyclohexane vapor photooxidation reactions // J. Photochem. Photobiol. A. – 2012. – V. 229. – P. 11–19.

35. Халамейда С.В., Сидорчук В.В., Зажигалов В.О. та ін. Механохімічна, мікрохвильова та ультразвукова деградація сафраніну в присутності різних форм діоксиду титану // Хімія, фізика та технологія поверхні. – 2011. – Т. 2, № 3. – С. 235–241.

36. Gupta N.S., Basu S., Payra P. et al. Reduction of nitrite to NO in an organised triphasic medium by platinum carbonyl clusters and redox active dyes as electron carriers // Dalton Trans. – 2007. – P. 2594–2598.

37. Zayed M.A., Gehad G. Mohamed G.G., Abdullah S.A.M. Synthesis, structure investigation, spectral characteristics and biological activities of some novel azodyes // Spectrochim. Acta. Part A. – V. 78. – 2011. – P. 1027–1036.

38. Kavarnos G.I., Turro N.J. Photosensitization by reversible electron transfer: theories, experimental evidence, and examples // Chem. Rev. – 1986. – V. 86. – P. 401–449.

39. Pei D., Luan J. Development of visible light-responsive sensitized photocatalysts // Int. J. Photoenergy. – V. 2012. – Article ID 262831 – 2012. – 13 p., doi:10.1155/2012/262831.




Copyright (©) 2013 V. V. Sydorchuk, S. V. Khalameida, V. O. Zazhigalov, O. A. Khanina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.