Influence of Ag Nanoparticles Incorporated into Silica Film on Ion Yield in UV Laser Desorption/Ionization Mass Spectrometry
DOI: https://doi.org/10.15407/hftp04.03.276
Abstract
Keywords
References
1. Guo Z., Ganawi A.A., Liu Q., He L. Nanomaterials in mass spectrometry ionization and prospects for biological application. Anal. Bioanal. Chem. 2006. 384(3): 584. https://doi.org/10.1007/s00216-005-0125-3
2. Chen C.-T., Chen Y.-C. Desorption/ionization mass spectrometry on nanocrystalline titania sol-gel-deposited films. Rapid Commun. Mass Spectrom. 2004. 18(17): 1956. https://doi.org/10.1002/rcm.1572
3. Huo H., Shen M., Ebstein S.M., Guthermann H. Surface-assisted laser desorption and ionization mass spectrometry using low-cost matrix-free substrates. J. Mass. Spectrom. 2011. 46(9): 859. https://doi.org/10.1002/jms.1961
4. McLean J.A., Stumpo K.A., Russel D.H. Size-selected (2–10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J. Amer. Chem. Soc. 2005. 127(15): 5304. https://doi.org/10.1021/ja043907w
5. Yonezawa T., Kawasaki H., Tarui A., Watanabe T., Arakawa R., Shimada T., Mafuné F. Detailed investigation on the possibility of nanoparticles of various metal elements for surface-assisted laser desorption/ionization mass spectrometry. Anal. Sci. 2009. 25(3): 339. https://doi.org/10.2116/analsci.25.339
6. Chiu T.-C., Chang L.-C., Chiang C.-K., Chang H.-T. Determining estrogens using surface-assisted laser desorption/ionization mass spectrometry with silver nanoparticles as the matrix. J. Amer. Soc. Mass Spectrom. 2008. 19(9): 1343. https://doi.org/10.1016/j.jasms.2008.06.006
7. Hua L., Chen J., Ge L., Tan S.N. Silver nanoparticles as matrix for laser desorption/ionization mass spectrometry of peptides. J. Nanopart. Res. 2007. 9(6): 1133. https://doi.org/10.1007/s11051-007-9244-4
8. Shrivas K., Wu H.-F. Applications of silver nanoparticles capped with different functional groups as the matrix and affinity probes in SALDI-TOF and AP-MALDI- ion trap mass spectrometry for rapid analysis of sulphur drugs and biothiols in human urine. Rapid Commun. Mass Spectrom. 2008. 22(18): 2863. https://doi.org/10.1002/rcm.3681
9. Spencer M.T., Furutani H., Oldenburg S.J., Darlington T.K., Prather K.A. Gold nanoparticles as a matrix for visible-wavelength single-particle matrix-assisted laser desorption/ionization mass spectrometry of small biomolecules. J. Phys. Chem. C. 2008. 112(11): 4083 https://doi.org/10.1021/jp076688k
10. Awazu K., Fujimaki M., Rockstuhl C., Tominaga J., Murakami H., Ohki Y., Yoshida N., Watanabe T. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Amer. Chem. Soc. 2008. 130(5): 1676. https://doi.org/10.1021/ja076503n
11. Krylova G.V., Gnatyuk Yu.I., Smirnova N.P. Eremenko A.M., Gun'ko V.M. Ag nanoparticles deposited onto silica, titania and zirconia mesoporous films synthesized by sol-gel template method. J. Sol-Gel Sci. Technol. 2009. 50(2): 216. https://doi.org/10.1007/s10971-009-1954-x
12. Cai W., Hofmeister H., Rainer T. Surface effect on the size evolution of surface plasmon resonances of Ag and Au nanoparticles dispersed within mesoporous silica. Physica E. 2001. 11(4): 339. https://doi.org/10.1016/S1386-9477(01)00171-0
13. Yang L., Li G.H., Zhang J.G., Zhang L.D. Fine structure of the Plasmon resonsnce absorption peak of Ag nanoparticles embedded in partially oxidized Si matrix. Appl. Phys. Lett. 2001. 78: 102. https://doi.org/10.1063/1.1336555
14. Bi H., Cai W., Shi H., Liu X. Optical absorption of Ag oligomers dispersed within pores of mesoporous silica. Chem. Phys. Lett. 2002. 357(3–4): 249. https://doi.org/10.1016/S0009-2614(02)00499-2
15. Penga S., McMahona J.M., Schatzb G.C., Gray S.K., Sun Y. Reversing the size-dependence of surface plasmon resonances. PNAS. 2010. 107(33): 14530. https://doi.org/10.1073/pnas.1007524107
16. Smithard M.A. Size effect on the optical and paramagnetic absorption of silver particles in a glass matrix. Solid State Commun. 1973. 13(2): 153. https://doi.org/10.1016/0038-1098(73)90214-7
17. Charlé K.P., Frank F., Schulze W. The optical-properties of silver microcrystallites in dependence on size and the influence of the matrix environment. Berichte der Bunsengesellschaft für physikalische Chemie. 1984. 88(4): 350. https://doi.org/10.1002/bbpc.19840880407
18. Govorov A.O., Richardson H.H. Generating heat with metal nanoparticles. NanoToday. 2007. 2(1): 30. https://doi.org/10.1016/S1748-0132(07)70017-8
19. Yeshchenko O.A., Dmitruk I.M., Alexeenko A.A., Losytskyy M.Yu., Kotko A.V., Pinchuk A.O. Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica. Phys. Rev. B. 2009. 79: 235438. https://doi.org/10.1103/PhysRevB.79.235438
20. Kucherenko M.G., Chmereva T.M., Kislov D.A. Energy transfer in molecular systems at the surface of metal solids and nanoparticles. High Energy Chem. 2009. 43(7): 587. https://doi.org/10.1134/S0018143909070157
21. Kislov D.A., Rohanov A.B. Fast mode triplet-singlet nonradiative transfer of electronic excitation energy between the dye molecules in the presence of metallic nanoparticles. In: Lomonosov-2011: Proc. Int. Conf. (Moscow, 2011). P. 31. [in Russian].
DOI: https://doi.org/10.15407/hftp04.03.276
Copyright (©) 2013 T. V. Fesenko, S. V. Snegir, N. I. Surovtseva, N. P. Smirnova, V. A. Pokrovskiy
This work is licensed under a Creative Commons Attribution 4.0 International License.