Chemistry, Physics and Technology of Surface, 2013, 4 (3), 276-282.

Influence of Ag Nanoparticles Incorporated into Silica Film on Ion Yield in UV Laser Desorption/Ionization Mass Spectrometry



DOI: https://doi.org/10.15407/hftp04.03.276

T. V. Fesenko, S. V. Snegir, N. I. Surovtseva, N. P. Smirnova, V. A. Pokrovskiy

Abstract


The efficiency of UV laser desorption/ionization from the surface of mesoporous silica films containing Ag nanoparticles of various sizes has been examined using methylene blue as a probe molecule. It has been shown that a rise in both AgNPs concentration and their size to 5–12 nm intensifies the nanoparticles stimulating effect on methylene blue desorption/ionization. The increase in Ag concentration in the silica host matrix from 3 to 10% raises fivefold the methylene blue cation peak intensity. The ion yield increase observed is discussed based on the phenomenon of local heating and local surface plasmon resonance under UV laser irradiation.

Keywords


laser desorption/ionization; mesoporous silica film; silver nanoparticles; methylene blue; plasmon resonance

Full Text:

PDF

References


1. Guo Z., Ganawi A.A., Liu Q., He L. Nanomaterials in mass spectrometry ionization and prospects for biological application. Anal. Bioanal. Chem. 2006. 384(3): 584. https://doi.org/10.1007/s00216-005-0125-3

2. Chen C.-T., Chen Y.-C. Desorption/ionization mass spectrometry on nanocrystalline titania sol-gel-deposited films. Rapid Commun. Mass Spectrom. 2004. 18(17): 1956. https://doi.org/10.1002/rcm.1572

3. Huo H., Shen M., Ebstein S.M., Guthermann H. Surface-assisted laser desorption and ionization mass spectrometry using low-cost matrix-free substrates. J. Mass. Spectrom. 2011. 46(9): 859. https://doi.org/10.1002/jms.1961

4. McLean J.A., Stumpo K.A., Russel D.H. Size-selected (2–10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J. Amer. Chem. Soc. 2005. 127(15): 5304. https://doi.org/10.1021/ja043907w

5. Yonezawa T., Kawasaki H., Tarui A., Watanabe T., Arakawa R., Shimada T., Mafuné F. Detailed investigation on the possibility of nanoparticles of various metal elements for surface-assisted laser desorption/ionization mass spectrometry. Anal. Sci. 2009. 25(3): 339. https://doi.org/10.2116/analsci.25.339

6. Chiu T.-C., Chang L.-C., Chiang C.-K., Chang H.-T. Determining estrogens using surface-assisted laser desorption/ionization mass spectrometry with silver nanoparticles as the matrix. J. Amer. Soc. Mass Spectrom. 2008. 19(9): 1343. https://doi.org/10.1016/j.jasms.2008.06.006

7. Hua L., Chen J., Ge L., Tan S.N. Silver nanoparticles as matrix for laser desorption/ionization mass spectrometry of peptides. J. Nanopart. Res. 2007. 9(6): 1133. https://doi.org/10.1007/s11051-007-9244-4

8. Shrivas K., Wu H.-F. Applications of silver nanoparticles capped with different functional groups as the matrix and affinity probes in SALDI-TOF and AP-MALDI- ion trap mass spectrometry for rapid analysis of sulphur drugs and biothiols in human urine. Rapid Commun. Mass Spectrom. 2008. 22(18): 2863. https://doi.org/10.1002/rcm.3681

9. Spencer M.T., Furutani H., Oldenburg S.J., Darlington T.K., Prather K.A. Gold nanoparticles as a matrix for visible-wavelength single-particle matrix-assisted laser desorption/ionization mass spectrometry of small biomolecules. J. Phys. Chem. C. 2008. 112(11): 4083 https://doi.org/10.1021/jp076688k

10. Awazu K., Fujimaki M., Rockstuhl C., Tominaga J., Murakami H., Ohki Y., Yoshida N., Watanabe T. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Amer. Chem. Soc. 2008. 130(5): 1676. https://doi.org/10.1021/ja076503n

11. Krylova G.V., Gnatyuk Yu.I., Smirnova N.P. Eremenko A.M., Gun'ko V.M. Ag nanoparticles deposited onto silica, titania and zirconia mesoporous films synthesized by sol-gel template method. J. Sol-Gel Sci. Technol. 2009. 50(2): 216. https://doi.org/10.1007/s10971-009-1954-x

12. Cai W., Hofmeister H., Rainer T. Surface effect on the size evolution of surface plasmon resonances of Ag and Au nanoparticles dispersed within mesoporous silica. Physica E. 2001. 11(4): 339. https://doi.org/10.1016/S1386-9477(01)00171-0

13. Yang L., Li G.H., Zhang J.G., Zhang L.D. Fine structure of the Plasmon resonsnce absorption peak of Ag nanoparticles embedded in partially oxidized Si matrix. Appl. Phys. Lett. 2001. 78: 102. https://doi.org/10.1063/1.1336555

14. Bi H., Cai W., Shi H., Liu X. Optical absorption of Ag oligomers dispersed within pores of mesoporous silica. Chem. Phys. Lett. 2002. 357(3–4): 249. https://doi.org/10.1016/S0009-2614(02)00499-2

15. Penga S., McMahona J.M., Schatzb G.C., Gray S.K., Sun Y. Reversing the size-dependence of surface plasmon resonances. PNAS. 2010. 107(33): 14530. https://doi.org/10.1073/pnas.1007524107

16. Smithard M.A. Size effect on the optical and paramagnetic absorption of silver particles in a glass matrix. Solid State Commun. 1973. 13(2): 153. https://doi.org/10.1016/0038-1098(73)90214-7

17. Charlé K.P., Frank F., Schulze W. The optical-properties of silver microcrystallites in dependence on size and the influence of the matrix environment. Berichte der Bunsengesellschaft für physikalische Chemie. 1984. 88(4): 350. https://doi.org/10.1002/bbpc.19840880407

18. Govorov A.O., Richardson H.H. Generating heat with metal nanoparticles. NanoToday. 2007. 2(1): 30. https://doi.org/10.1016/S1748-0132(07)70017-8

19. Yeshchenko O.A., Dmitruk I.M., Alexeenko A.A., Losytskyy M.Yu., Kotko A.V., Pinchuk A.O. Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica. Phys. Rev. B. 2009. 79: 235438. https://doi.org/10.1103/PhysRevB.79.235438

20. Kucherenko M.G., Chmereva T.M., Kislov D.A. Energy transfer in molecular systems at the surface of metal solids and nanoparticles. High Energy Chem. 2009. 43(7): 587. https://doi.org/10.1134/S0018143909070157

21. Kislov D.A., Rohanov A.B. Fast mode triplet-singlet nonradiative transfer of electronic excitation energy between the dye molecules in the presence of metallic nanoparticles. In: Lomonosov-2011: Proc. Int. Conf. (Moscow, 2011). P. 31. [in Russian].




DOI: https://doi.org/10.15407/hftp04.03.276

Copyright (©) 2013 T. V. Fesenko, S. V. Snegir, N. I. Surovtseva, N. P. Smirnova, V. A. Pokrovskiy

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.