Chemistry, Physics and Technology of Surface, 2013, 4 (3), 320-326.

Thermal Transformations of Copper Acetylacetonate Adsorbed on Silica Surface



M. V. Borysenko, K. S. Kulyk, A. G. Dyachenko, T. V. Cherniavska, L. I. Borysenko

Abstract


Using molecular layering method and impregnation of silica Asil-300 with copper acetylacetonate, Cu(acac)2, nanocomposites of CuO/SiO2 have been synthesized containing CuO nanoparticles with crystallite size of 36–88 nm and concentration of 1.6–7.4 wt. %. The thermal transformations of surface structures of Cu(acac)2 have been studied by infrared spectroscopy and differential thermogravimetry. Heating the adsorbed Cu(acac)2 and chemisorbed –Cu(acac)-groups up to 550 °C leads to the formation of tenorite – monoclinic copper oxide on silica surface.

Keywords


thermal transformation; copper oxide nanoparticles; silica surface; infrared spectroscopy; differential thermogravimetry

Full Text:

PDF (Русский)

References


1. Шапкин Н.П., Альохина А.Г., Реутов В.А. и др. Термическая устойчивость γ-замещен-ных β-дикетонатов меди // Журн. общ. химии. – 1992. – Т. 62, № 3. – С. 505–509.

2. De Sousa E.M.B., De Sousa A.P.G., Mohallem N.D.S. et al. Copper-silica sol-gel catalysts: Structural changes of Cu species upon thermal treatment // J. Sol-Gel Sci. Technol. – 2004. –V. 26, N 1–3. – P. 873–877.

3. Shelef M. Selective catalytic reduction of NOx with N-free reductants // Chem. Rev. – 1995. – V. 95, N 1. – P. 209–225.

4. Zheng M., Zhao T., Xu W. et al. Preparation and characterization of Cu/SiO2 catalyst by co-gelation process // J. Mater. Sci. – 2007. – V. 42. – P. 8320–8325.

5. Brands D.S., Poels E.K., Krieger T.A. et al. The relation between reduction temperature and activity in copper catalysed ester hydrogenolysis and methanol synthesis // Catal. Lett. – 1996. – V. 36. – P. 175–182.

6. Tüysüz H., Galilea J.L., Schüth F. Highly diluted copper in a silica matrix as active catalyst for propylene oxidation to acrolein // Catal. Lett. – 2009. – V. 131 – P. 49–53.

7. Tsoncheva T., Venkov Tz., Dimitrov M. et al. Copper-modified mesoporous MCM-41 silica: FTIR and catalytic study // J. Mol. Catal. A. – 2004. – V. 209. – P. 125–134.

8. Batista A.P.L., Carvalho H.W.P., Luz G.H.P et al. Preparation of CuO/SiO2 and photocatalytic activity by degradation of methylene blue // Environ. Chem. Lett. – 2010. – V. 8. – P. 63–67.

9. Borysenko M.V., Bogatyrov V.M., Poddenezhny E.N. et al. Application of chromium-containing silica for synthesising functional glasslike materials by the sol-gel method // J. Sol-Gel Sci. Technol. – 2004. – V. 32. – P. 327–331.

10. Беллами Л.Дж. Инфракрасные спектры сложных молекул. Пер. с англ. / Под ред. Ю.А. Пентина. – Москва: Изд-во иностранной литературы, 1963. – 592 с.

11. Борисенко Н.В., Сулим И.Я., Борисенко Л.И. Модифицирование высокодисперсного кремнезема ацетилацетонатом циркония // Теорет. эксперим. химия. – 2008. – Т. 44, № 3. – С. 191–195.

12. White M.G. Uses of polynuclear metal complexes to develop designed dispersions of supported metal oxides // Catal. Today. – 1993. – V. 18, N 1. – P. 73-109.




Copyright (©) 2013 M. V. Borysenko, K. S. Kulyk, A. G. Dyachenko, T. V. Cherniavska, L. I. Borysenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.