Chemistry, Physics and Technology of Surface, 2014, 5 (4), 361-385.

Interfacial Behavior of Low- and High-Molecular Weight Compounds vs. Temperature and Confinement Effects



DOI: https://doi.org/10.15407/hftp05.04.361

V. M. Gun'ko, V. V. Turov, V. I. Zarko, O. V. Goncharuk, O. S. Remez, R. Leboda, J. Skubiszewska-Zięba

Abstract


The interfacial and temperature behavior of water, n-decane, decanol, poly(dimethylsiloxane) (PDMS) bound to nanooxides initial or after high-pressure cryogelation and silica gels was analyzed using low-temperature 1H NMR spectroscopy (applied to static samples to observe only mobile adsorbates), differential scanning calorimetry (DSC), thermoporometry and quantum chemical methods. Both NMR and DSC results demonstrated that during heating of frozen samples a fraction of organics or PDMS remained frozen at temperature higher than the melting point of bulk liquid and a fraction of any adsorbate remained unfrozen upon cooling at temperature lower than the freezing point. These effects depend on the type of an adsorbate and the pore sizes of an adsorbent. Broadening of freezing/melting temperature range is observed for PDMS or decane confined in pores of silica gel or voids between nanoparticles in fumed nanooxides. This effect is minimal for silica gel Si-100 with broad mesopores.


Keywords


nanooxides; silica gels; cryonanooxides; interfacial phenomena; confined space effects; freezing point depression; cooling/heating; hysteresis effects

Full Text:

PDF

References


1. Iler R.K. The Chemistry of Silica. (Chichester: Wiley, 1979).

2. Legrand A.P. (Ed.) The Surface Properties of Silicas. (New York: Wiley, 1998).

3. Hubbard A.T. (Ed.) Encyclopedia of Surface and Colloid Science. (New York: Marcel Dekker, 2002).

4. Bergna H.E. (Ed.) Colloidal Silica: Fundamentals and Applications. (Salisbury: Taylor & Francis LLC, 2005).

5. Fendler J.H. (Ed.) Nanoparticles and Nanostructured Films. (Weinheim: Wiley-VCH, 1998).  https://doi.org/10.1002/9783527612079

6. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013).  https://doi.org/10.1201/b14202

7. Gun'ko V.M., Morozova L.P., Turova A.A., Turov A.V., Gaishun V.E., Bogatyrev V.M., Turov V.V. Hydrated phosphorus oxyacids alone and adsorbed on nanosilica. J. Colloid Interface Sci. 2012. 368(1): 263.  https://doi.org/10.1016/j.jcis.2011.11.018

8. Gun'ko V.M., Turov V.V., Turov A.V. Hydrogen peroxide-water mixture bound to nano-structured silica. Chem.Phys. Lett. 2012. 531: 132.https://doi.org/10.1016/j.cplett.2012.01.090

9. Gun'ko V.M., Savina I.N., Mikhalovsky S.V. Cryogels: Morphological, structural and adsorption characterisation. Adv. Colloid Interface Sci. 2013. 187–188: 1.  https://doi.org/10.1016/j.cis.2012.11.001

10. Gun'ko V.M., Turov V.V., Krupska T.V., Ruban A.N., Kazanets A.I., Leboda R., Skubiszewska-Zięba J. Interfacial behavior of silicone oils interacting with nanosilica and silica gels. J. Colloid Interface Sci. 2013. 394: 467.  https://doi.org/10.1016/j.jcis.2012.12.026

11. Gun'ko V.M., Sulym I.Y., Borysenko M.V., Turov V.V. Interfacial behavior of water bound to zirconia/nanosilica with adsorbed poly(dimethylsiloxane). Colloids Surf., A. 2013. 426: 47.  https://doi.org/10.1016/j.colsurfa.2013.02.063

12. Turov V.V., Gun'ko V.M., Zarko V.I., Goncharuk O.V., Krupska T.V., Turov A.V., Leboda R., Skubiszewska-Zięba J. Interfacial behavior of n-decane bound to weakly hydrated silica gel and nanosilica over a broad temperature range. Langmuir. 2013. 29(13): 4303.  https://doi.org/10.1021/la400392h

13. Gun'ko V.M., Turov V.V., Leboda R., Skubiszewska-Zięba J., Charmas B. Confined space effects driving to heterogenization of solutions at the interfaces. Adsorption. 2013. 19: 305.  https://doi.org/10.1007/s10450-012-9453-8

14. Gun'ko V.M. Modeling of interfacial behavior of water and organics. J. Theoret. Comput. Chem. 2013. 12: 1350059.  https://doi.org/10.1142/S0219633613500594

15. Gun'ko V.M., Turov V.V., Turova A.A., Krupska T.V., Pissis P., Leboda R., Skubiszewska-Zięba J. Interactions of poly(dimethylsiloxane) with nanosilica and silica gel upon cooling-heating. J. Colloid Interface Sci. 2014. 426: 48.  https://doi.org/10.1016/j.jcis.2014.03.055

16. Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Prykhod'ko G.P., Remez O.S., Leboda R., Skubiszewska-Zięba J., Blitz J.P. High-pressure cryogelation of nanosilica and surface properties of cryosilicas. Colloids Surf. A. 2013. 436: 618.  https://doi.org/10.1016/j.colsurfa.2013.07.036

17. Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Matkovsky A.K., Oranska O.I., Palyanytsya B.B., Remez O.S., Nychiporuk Y.M., Ptushinskii Y.G., Leboda R., Skubiszewska-Zięba J. Cryogelation of individual and complex nanooxides under different conditions. Colloids Surf. A. 2014. 456: 261.  https://doi.org/10.1016/j.colsurfa.2014.05.045

18. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. (London: Academic Press, 1982).

19. Gun'ko V.M. Composite materials: Textural characteristics. Appl. Surf. Sci. 2014. 307: 444.  https://doi.org/10.1016/j.apsusc.2014.04.055

20. Provencher S.W. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 1982. 27: 213.  https://doi.org/10.1016/0010-4655(82)90173-4

21. Nguyen C., Do D.D. A new method for the characterization of porous materials. Langmuir. 1999. 15(10): 3608.  https://doi.org/10.1021/la981140d

22. Gun'ko V.M., Do D.D. Characterization of pore structure of carbon adsorbents using regularization procedure. Colloids Surf. A. 2001. 193(1–3): 71.  https://doi.org/10.1016/S0927-7757(01)00685-9

23. Gun'ko V.M., Mikhalovsky S.V. Evaluation of slitlike porosity of carbon adsorbents. Carbon. 2004. 42(4): 843.  https://doi.org/10.1016/j.carbon.2004.01.059

24. Frisch M.J., Trucks G.W., Schlegel H.B. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

25. Stewart J.J.P. MOPAC 2012, Colorado Springs, CO: Stewart Computational Chemistry, USA, http://openmopac.net/, 2014.

26. Maia J.D.C., Carvalho G.A.U., Mangueira C.P., Santana S.R., Cabral L.A.F., Rocha G.B. GPU linear algebra libraries and GPGPU programming for accelerating MOPAC semiempirical quantum chemistry calculations. J. Chem. Theory Comput. 2012. 8(9): 3072.  https://doi.org/10.1021/ct3004645

27. Granovsky A.A. Firefly version 8.1, http://classic.chem.msu.su/gran/gamess/index.html




DOI: https://doi.org/10.15407/hftp05.04.361

Copyright (©) 2014 V. M. Gun'ko, V. V. Turov, V. I. Zarko, O. V. Goncharuk, O. S. Remez, R. Leboda, J. Skubiszewska-Zięba

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.