Chemistry, Physics and Technology of Surface, 2014, 5 (4), 386-395.

Nanoporous β-cyclodextrin-containing Silicas: Synthesis, Structure and Properties



DOI: https://doi.org/10.15407/hftp05.04.386

L. A. Belyakova, D. Yu. Lyashenko, L. S. Dzyubenko, O. M. Shvets

Abstract


Nanoporous b-cyclodextrin-containing silicas which differ in functional substituents of wide edge of attached cyclic oligosaccharide molecules (alcohol, bromoacetyl, thiosemicarbazidoacetyl groups) were synthesized. Сhemical composition of surface layer of organosilicas and their sorptional parameters were determined using IR spectroscopy, isotherms of nitrogen ad-desorption, elemental, chemical and thermogravimetric analyses. Ranges of thermal and chemical stability of synthesized b-cyclodextrin-containing silicas were defined; a method of organosilicas regeneration was proposed. Activation energies of water removal from the inner cavities of β-cyclodextrins and from the surface of functional organosilicas were calculated. Distribution and selectivity coefficients for sorption of mercury(II), copper(II), lead(II), cadmium(II), and zinc(II) cations were computed.

Keywords


silica; β-cyclodextrin; chemical immobilization; sorption; heavy metal nitrates; IR spectroscopy; thermogravimetry; regeneration

Full Text:

PDF

References


1. State sanitary rules and norms intended for human consumption. Ofits. Visn. Ukraine. 2010. 51. [in Ukrainian].

2. Iler R.K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. (New York: Wiley-Interscience, 1979).

3. Tertykh V.A., Belyakova L.A. Chemical Reactions Involving Silica Surface. (Kiev: Naukova Dumka, 1991). [in Russian].

4. Vansant E.F., Van der Voort P., Vrancken K.C. Characterization and Chemical Modification on the Silica Surface. (Amsterdam: Elsevier, 1995).

5. Piloyan G.O., Ryabchikov J.D., Novikova O.S. Determination of activation energies of chemical reactions by differential thermal analysis. Nature. 1966. 212: 1229.  https://doi.org/10.1038/2121229a0

6. Helfferich F.G. Ion Exchange. (New York: McGraw-Hill, 1962).

7. Marhol M. Ion Exchangers in Analytical Chemistry. Their Properties and Use in Inorganic Chemistry. (Prague: Academia, 1982).

8. Belyakova L.A., Lyashenko D.Yu., Shvets A.N. Sorption of Cd(II) from multicomponent nitrate solutions by functional organosilicas. J. Water Chem. Technol. 2014. 36(2): 56.  https://doi.org/10.3103/S1063455X14020027

9. Belyakova L.A., Kazdobin K.A., Belyakov V.N., Ryabovc S.V., de Namor A.F.D. Synthesis and properties of supramo-lecular systems based on silica. J. Colloid Interface Sci. 2005. 283(2): 488.  https://doi.org/10.1016/j.jcis.2004.09.012

10. Belyakova L.A., Lyashenko D.Yu., Varvarin A.M. Features of the interaction of silica with tosyl-β-cyclodextrin. Ukr. Chem. J. 2005. 71: 86. [in Russian].

11. Belyakova L.A., Lyashenko D.Yu. Zinc(II) sorption on nanoporous β-cyclodextrin-containing organosilicas. Him. Fiz. Tehnol. Poverhni. 2012. 3(3): 227. [in Russian].

12. Smith A.L. Applied Infrared Spectroscopy. (New York: John Wiley and Sons, 1979).

13. Bellamy L.J. Advances in Infrared Group Frequencies. (London: Methuen, 1968).

14. Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998. 98(5): 1743.  https://doi.org/10.1021/cr970022c

15. Hedges A.R. Industrial applications of cyclodextrins. Chem. Rev. 1998. 98(5): 2035.  https://doi.org/10.1021/cr970014w

16. Phan T.N.T., Bacquet M., Laureyns J., Morcellet M. New silica gels functionalized with 2-hydroxy-3-methacryloyloxypropyl-β-cyclodextrin using coating or grafting methods. Phys. Chem. Chem. Phys. 1999. 1: 5189.   https://doi.org/10.1039/a905713g

17. Gao Z.-W., Zhao X.-P. Guest-controlling effects on ER behaviors of β-cyclodextrin polymer. J. Colloid Interface Sci. 2005. 289(1): 56.  https://doi.org/10.1016/j.jcis.2005.03.027

18. Pearson R.G. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 1988. 27(4): 734.  https://doi.org/10.1021/ic00277a030

19. Marcus Y., Kamlet M.J., Taft R.W. Linear solvation energy relationships. Standard molar Gibbs free energies and enthalpies of transfer of ions from water into nonaqueous solvents. J. Phys. Chem. 1988. 92(12): 3613.   https://doi.org/10.1021/j100323a057

20. Pearson R.G. The theory of soft and hard acids and bases. J. Chem. Educ. 1963. 45: 581.https://doi.org/10.1021/ed045p581   




DOI: https://doi.org/10.15407/hftp05.04.386

Copyright (©) 2014 L. A. Belyakova, D. Yu. Lyashenko, L. S. Dzyubenko, O. M. Shvets

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.