Chemistry, Physics and Technology of Surface, 2014, 5 (4), 421-437.

Band-Gap Change and Photocatalytic Activity of Silica/Titania Composites Associated with Incorporation of CuO and NiO



DOI: https://doi.org/10.15407/hftp05.04.421

M. A. Nazarkovsky, V. M. Gun'ko, G. Wójcik, B. Czech, A. Sobieszek, J. Skubiszewska-Zięba, W. Janusz, E. Skwarek

Abstract


The CuO and NiO doped silica/titania nanocomposites were investigated using ultraviolet-visible light diffuse reflectance spectroscopy (UV-Vis DRS) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the samples was studied in photooxidation of caffeine (CAF). The band gaps were calculated using the Tauc plot for non-direct allowed optical transitions except a system at CNiO = 30 wt. % analyzed using a direct allowed optical transition. Copper oxide concentration increase leads to almost exponential diminution of the band gap. The band gap of NiO doped composites demonstrates almost linear change with CNiO. According to the XPS data, the doping oxides are completely absent at a composite surface. All the composites are shown to be more effective photocatalysts than titania Degussa P25.

Keywords


titania; caffeine; P25; XPS; photocatalysts; Heraeus reactor; CuO; NiO

Full Text:

PDF

References


1. Bernik S., Daneu N., Recnik A. Inversion boundary induced grain growth in TiOor Sb2Odoped ZnO-based varistor ceramics. J. Eur. Ceram. Soc. 2004. 24(15–16): 3703.  https://doi.org/10.1016/j.jeurceramsoc.2004.03.004

2. Cruz A.M., Reyes Y., Gallego B., Peiteado M. Control of microstructure in TiO2-doped ceremaic varistors based in ZnO-Bi2O3-Sb2O3 system. Bol. Soc. Esp. Ceram. Vidrio. 2012. 51(1): 61.  https://doi.org/10.3989/cyv.092012

3. Gotfredson K., Wennerberg A., Johansson C., Skovgaard L.T., Hjørting-Hansen E.Anchorage of TiO2-blasted, HA-coated, and machined implants: An experimental study with rabbits. J. Biomed. Mater. Res. 1995. 29(10): 1223.  https://doi.org/10.1002/jbm.820291009

4. Hosseinnia A., Keyanpour-Rad M., Pazouki M. Photo-catalytic Degradation of Organic Dyes with Different Chromophores by Synthesized Nanosize TiO2 Particles. World Appl. Sci. J. 2010. 8(11): 1327.

5. Kar A., Raja K.S., Misra M. Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surf. Coat. Technol. 2006. 201(6): 3723.  https://doi.org/10.1016/j.surfcoat.2006.09.008

6. Konstantinou I.K., Albanis T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Appl. Catal., B. 2004. 49(1): 1.  https://doi.org/10.1016/j.apcatb.2003.11.010

7. Kozhukharov S., Nenova Z., Nenov T., Ivanov S. Influence of dopants on the performance of humidity sensitive elements, prepared by deposition of TiO2 via sol-gel method. Annual proceedings of «Angel Kanchev» University of Ruse. 2010. 49(9.1): 33.

8. Lee J., Dong X., Dong X. Ultrasonic synthesis and photocatalytic characterization of H3PW12O40/TiO2 (anatase). Ultrason. Sonochem. 2010. 17(4): 649.  https://doi.org/10.1016/j.ultsonch.2010.01.009

9. Lee S.-H., Kim H.-W., Lee E.-J., Li L.H., Kim H.E. Hydroxyapatite-TiO2 Hybrid Coating on Ti implants. J. Biomater. Appl. 2006. 20(3): 195.  https://doi.org/10.1177/0885328206050518

10. Nenov T., Kozhukharov S., Nenova Z., Machkova M. Impact of dopants on the characteristics of thin film humidity sensor elements: «Sensor + Test» Conference. (Germany, 2011).

11. Tian L., Ye L., Deng K., Zan L. TiO2/carbon nanotube hybrid nanostructures: Solvothermal synthesis and their visible light photocatalytic activity. J. Solid State Chem. 2011. 184(6): 1465.  https://doi.org/10.1016/j.jssc.2011.04.014

12. Uzunova-Bujnova M., Kralchevska R., Milanova M., Todorovska R., Hristov D., Todorovsky D. Crystal structure, morphology and photocatalytic activity of modified TiO2 and of spray-deposited TiO2 films. Catal. Today. 2010. 151(1): 14.  https://doi.org/10.1016/j.cattod.2010.02.058

13. Vohra M.S., Davis A.P. TiO2-Assisted photocatalysis of lead-EDTA. Water Res. 2000. 34: 952.  https://doi.org/10.1016/S0043-1354(99)00223-7

14. Zubillaga O., Cano F.J., Azkarate I., Molchan I.S., Thompson G.E., Skeldon P. Synthesis of anodic films in the presence of aniline and TiO2 nanoparticles on AA2024-T3 aluminium alloy. Thin Solid Films. 2009. 517(24): 6742.  https://doi.org/10.1016/j.tsf.2009.05.039

15. Shiraishi K., Koseki H., Tsurumoto T., Baba K., Naito M., Nakayama K. Antibacterial metal implant with a TiO2-conferred photocatalytic bactericidal effect against Staphylococcus aureus. Surf. Interface Anal. 2009. 41(1): 17.  https://doi.org/10.1002/sia.2965

16. Burda C., Lou Y., Chen X., Samia A.C.S., Stout J., Gole J.L. Enhanced Nitrogen Doping in TiO2 Nanoparticles. Nano Letters. 2003. 3(8): 1049.  https://doi.org/10.1021/nl034332o

17. Cao Y., Yang W., Zhang W., Liub G., Yue P. Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New J. Chem. 2004. 28: 218.  https://doi.org/10.1039/b306845e

18. Choi W., Termin A., Hoffmann M.R. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. 1994. 98(51): 13669.  https://doi.org/10.1021/j100102a038

19. Gai Y., Li J., Li S.-S., Xia J.B., Wei S.H. Design of Narrow-Gap TiO2: A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity. Phys. Rev. Lett. 2009. 102(3): 036402.  https://doi.org/10.1103/PhysRevLett.102.036402

20. Lindgren T.r., Mwabora J.M., Avenda E., Lindquist S.-E. Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering. J. Phys. Chem. B. 2003. 107(24): 5709.  https://doi.org/10.1021/jp027345j

21. Yun H.J., Lee H., Joo J.B., Kim N.D., Yi J. Tuning the band-gap energy of TiO2-xCx nanoparticle for high performance photo-catalyst. Electrochemistry Communications. 2010. 12(6): 769.  https://doi.org/10.1016/j.elecom.2010.03.029

22. Zhu W., Qiu X., Iancu V., Chen X.-Q., Pan H., Wang W., Dimitrijevic N.M., Rajh T., Meyer H.M., III, Paranthaman M.P., Stocks G.M., Weitering H.H., Gu B., Eres G., Zhang Z. Band Gap Narrowing of Titanium Oxide Semiconductors by Noncompensated Anion-Cation Codoping for Enhanced Visible-Light Photoactivity. Phys. Rev. Lett. 2009. 103: 226401.  https://doi.org/10.1103/PhysRevLett.103.226401

23. Bakry A. Dispersion and Fundamental Absorption Edge Analysis of Doped a-Si:H thin Films. Egyptian Journal of Solids. 2008. 31(2): 191.

24. Madhusudan Reddy K., Manorama S.V., Ramachandra Reddy A. Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 2003. 78(1): 239.  https://doi.org/10.1016/S0254-0584(02)00343-7

25. Murphy A.B. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells. 2007. 91(14): 1326. https://doi.org/10.1016/j.solmat.2007.05.005 

26. Singh R.S., Bhushan S., Singh A.K., Deo S.R. Characterization and optical properties of CgSe Nano-crystalline thin films. Digest Journal of Nanomaterials and Biostructures. 2011. 6(2): 403.

27. Artem'ev Y.M., Ryabchuk V.K. Introduction to Heterogeneous Photocatalysis. (St. Petersburg: St.Petersburg State University, 1999). [in Russian].

28. Henglein A., Fojtik A., Weller H., Bunsenges B. Reactions on colloidal Semiconductor particles. Phys. Chem. Chem. Phys. 1987. 91(4): 441.  https://doi.org/10.1002/bbpc.19870910443

29. Hoffmann H., Henglein A. Q-particles: Size quantization effects in colloidal semiconductors. New Trends in Colloid Science. Progress in Colloid end Polymer Science. 1987. 73: 1.

30. Spanhel L., Haase M., Weller H., Henglein A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc. 1987. 109(19): 5649.  https://doi.org/10.1021/ja00253a015

31. Weller H. Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region Between Solid State and Molecules. Angew. Chem. Int. Ed. 1993. 32(1): 41.  https://doi.org/10.1002/anie.199300411

32. Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 1986. 90(12): 2555.  https://doi.org/10.1021/j100403a003

33. Kayanuma Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B. 1988. 38: 9797.  https://doi.org/10.1103/PhysRevB.38.9797

34. Franceschetti A., Zunger A. Direct Pseudo-potential Calculation of Exciton Coulomb and Exchange Energies in Semiconductor Quantum Dots. Phys. Rev. Lett. 1997. 78: 915.  https://doi.org/10.1103/PhysRevLett.78.915

35 .Senger R.T., Bajaj K.K. Optical properties of confined polaronic excitons in spherical ionic quantum dots. Phys. Rev. B. 2003. 68: 045313.  https://doi.org/10.1103/PhysRevB.68.045313

36. Uozumi T., Kayanuma Y. Excited states of an electron-hole pair in spherical quantum dots and their optical properties. Phys. Rev. B. 2002. 65: 165318.  https://doi.org/10.1103/PhysRevB.65.165318

37. Vatankhah C., Ebadi A. Quantum Size Effects on Effective Mass and Band gap of Semiconductor Quantum Dots. Res. J. Recent Sci. 2013. 2(1): 21.

38. Guo M., Du J. First-principles study of electronic structures and optical properties of Cu, Ag, and Au-doped anatase TiO2 .Physica B. 2012. 407(6): 1003.  https://doi.org/10.1016/j.physb.2011.12.128

39. Reyes-Coronado D., Rodriguez-Gattorno G., Espinosa-Pesqueira M.E., Cab C., de Coss R., Oskam G. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology. 2008. 19(14): 145605.  https://doi.org/10.1088/0957-4484/19/14/145605

40. Bonch V.L., Kalashnikov S.G. Physics of Semiconductors. 2 ed. (Moscow: Nauka, 1990). [in Russian].

41. Ignatov A.N. Optoelectronic instruments ans devices. (Moscow: Electrotrends, 2006). [in Russian].

42. Rafferty B., Brown L.M. Direct and indirect transitions in the region of the band gap using electron-energy-loss spectroscopy. Phys. Rev. B. 1998. 58: 10326.  https://doi.org/10.1103/PhysRevB.58.10326

43 .Carballa M., Omil F., Ternes T., Lema J.M. Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Res. 2007. 41(10): 2139.  https://doi.org/10.1016/j.watres.2007.02.012

44. Ellis J.B. Pharmaceutical and personal care products (PPCPs) in urban receiving waters. Environ. Pollut. 2006. 144(1): 184.  https://doi.org/10.1016/j.envpol.2005.12.018

45. Mohapatra D.P., Brar S.K., Tyagi R.D., Picard P., Surampalli R.Y. Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine. Sci. Total Environ. 2014. 470–471: 58.  https://doi.org/10.1016/j.scitotenv.2013.09.034

46. Diamanti-Kandarakis E., Bourguignon J.-P., Giudice L.C., Hauser R., Prins G.S., Soto A.M., Zoeller R.T., Gore A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009. 30(4): 293.  https://doi.org/10.1210/er.2009-0002

47. Lapworth D.J., Baran N., Stuart M.E., Ward R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012. 163: 287.  https://doi.org/10.1016/j.envpol.2011.12.034

48. Xu J., Wu L., Chang A.C. Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere. 2009. 77(10): 1299.  https://doi.org/10.1016/j.chemosphere.2009.09.063

49. Wu X., Ernst F., Conkle J.L., Gan J. Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environ. Int. 2013. 60: 15.  https://doi.org/10.1016/j.envint.2013.07.015

50. Yang B., Ying G.-G., Zhao J.-L., Liu S., Zhou L.-J., Chen F. Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate(VI) treatment of secondary wastewater effluents. Water Res. 2012. 46(7): 2194.  https://doi.org/10.1016/j.watres.2012.01.047

51. Weigel S., Kuhlmann J., Huhnerfuss H. Drugs and personal care products as ubiquitous pollutants: occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea. Sci. Total Environ. 2002. 295(1–3): 131.  https://doi.org/10.1016/S0048-9697(02)00064-5

52. Bruton T., Alboloushi A., Garza de la B., Kim Bi-O., Halden R.U. Fate of Caffeine in the Environment and Ecotoxicological Considerations. Contaminants of Emerging Concern in the Environment: Ecological and Human Health Considerations. American Chemical Society. 2010. Chapter 12: 257. https://doi.org/10.1021/bk-2010-1048.ch012

53. Sauve S., Aboulfadl K., Dorner S., Payment P., Deschamps G., Prévost M. Fecal coliforms, caffeine and carbamazepine in stormwater collection systems in a large urban area. Chemosphere. 2012. 86(2) 118.  https://doi.org/10.1016/j.chemosphere.2011.09.033

54. Ananpattarachai J., Kajitvichyanukul P., Seraphin S. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J. Hazard. Mater. 2009. 168(1): 253.  https://doi.org/10.1016/j.jhazmat.2009.02.036

55. Paz Y. Application of TiO2 photocatalysis for air treatment: Patents' overview. Appl. Catal., B. 2010. 99(3–4): 448.  https://doi.org/10.1016/j.apcatb.2010.05.011

56. Cao S., Yeung K.L., Yue P.-L. An investigation of trichloroethylene photocatalytic oxidation on mesoporous titania-silica aerogel catalysts. Appl. Catal., B. 2007. 76(1–2): 64. https://doi.org/10.1016/j.apcatb.2007.05.009

57. Pinho L., Mosquera M.J. Titania-Silica Nanocomposite Photocatalysts with Application in Stone Self-Cleaning. J. Phys. Chem. C. 2011. 115: 22851.  https://doi.org/10.1021/jp2074623

58. Li Z., Hou B., Xu Y., Wu D., Sun Y., Hu W., Deng F. Comparative study of sol-gel-hydrothermal and sol-gel synthesis of titania-silica composite nanoparticles. J. Solid State Chem. 2005. 178(5): 1395.  https://doi.org/10.1016/j.jssc.2004.12.034 

59. Xie C., Xu Z., Yang Q., Xue B., Du Y., Zhang J. Enhanced photocatalytic activity of titania-silica mixed oxide prepared via basic hydrolyzation. Materials Science and Engineering: B. 2004. 112(1): 34.  https://doi.org/10.1016/j.mseb.2004.05.011

60. Khalil K.M.S., Elsamahy A.A., Elanany M.S. Formation and Characterization of High Surface Area Thermally Stabilized Titania/Silica Composite Materials via Hydrolysis of Titanium(IV) tetra-Isopropoxide in Sols of Spherical Silica Particles. J. Colloid Interface Sci. 2002. 249(2): 359.  https://doi.org/10.1006/jcis.2002.8268

61. Mohamed M.M., Salama T.M., Yamaguchi T. Synthesis, characterization and catalytic properties of titania-silica catalysts. Colloids Surf., A. 2002. 207(1–3): 25.  https://doi.org/10.1016/S0927-7757(02)00002-X

62 .Zhang X., Zhang F., Chan K.-Y. Synthesis of titania-silica mixed oxide mesoporous materials, characterization and photocatalytic properties. Appl. Catal., A. 2005. 284(1–2): 193.

63. Hilonga A., Kim J.-K., Sarawade P.B., Kim H.T. Titania-silica composites with less aggregated particles. Powder Technol. 2009. 196(3): 286.  https://doi.org/10.1016/j.powtec.2009.08.004

64. Gao X., Wachs I.E. Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties. Catal. Today. 1999. 51(2): 233.  https://doi.org/10.1016/S0920-5861(99)00048-6

65. Byrne H.E., Mazyck D.W. Removal of trace level aqueous mercury by adsorption and photocatalysis on silica-titania composites. J. Hazard. Mater. 2009. 170(2–3): 915.  https://doi.org/10.1016/j.jhazmat.2009.05.055

66. Zhang H., Quan X., Chen S., Zhao H. Fabrication and Characterization of Silica/Titania Nanotubes Composite Membrane with Photocatalytic Capability. Environ. Sci. Technol. 2006. 40(19): 6104.  https://doi.org/10.1021/es060092d

67. Wang P., Du M., Zhang M., Zhu H., Ba Sh.The preparation of tubular heterostructures based on titanium dioxide and silica nanotubes and their photocatalytic activity. Dalton Trans. 2014. 43: 1846.  https://doi.org/10.1039/C3DT51959G

68. Kubelka P., Munk F. Ein Beitrag zur Optik der Farbanstriche. Zeitschrift für technische Physik. 1931. 12: 593.

69. Buchholz D.B., Liu J., Marks T.J., Zhang M., Chang R.P.H. Control and Characterization of the Structural, Electrical, and Optical Properties of Amorphous Zinc-Indium-Tin Oxide Thin Films. ACS Appl. Mater. Interfaces. 2009. 1(10): 2147.  https://doi.org/10.1021/am900321f

70. Tauc J., Grigorovici R., Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B. 1966. 15(2): 627.  https://doi.org/10.1002/pssb.19660150224

71. Nagao Y., Yoshikawa A., Koumoto K., Kato T., Ikuhara Yu., Ohta H. Experimental characterization of the electronic structure of anatase TiO2: Thermopower modulation. Appl. Phys. Lett. 2010. 97: 172112. https://doi.org/10.1063/1.3507898

72. Venkatachalam N., Palanichamy M., Murugesan V. Sol-gel preparation and characterization of nanosize TiO2: Its photocatalytic performance. Mater. Chem. Phys. 2007. 104(2–3): 454.  https://doi.org/10.1016/j.matchemphys.2007.04.003

73. Mohammadi M.R., Fray D.J. Mesoporous and nanocrystalline sol-gel derived NiTiO3 at the low temperature: Controlling the structure, size and surface area by Ni:Ti molar ratio. Solid State Sci. 2010. 12(9): 1629.  https://doi.org/10.1016/j.solidstatesciences.2010.07.015

74. Nazarkovsky M.A., Goncharuk E.V., Pakhlov E.M., Oranska E.I., Skwarek E., Skubiszewska-Zięba J., Leboda R., Janusz W., Gun'ko V.M. Synthesis and Properties of Composites Synthesized by Deposition of TiO2 Doped with SnO2 or NiO onto A-300 Nanosilica. Prot. Met. Phys. Chem. 2013. 49(5): 541.  https://doi.org/10.1134/S2070205113050067

75. Riyas S., Krishnan G., Mohan Das P.N. Rutilation in nickel oxide-doped titania prepared by different methods. Ceram. Int. 2006. 32(5): 593.  https://doi.org/10.1016/j.ceramint.2005.04.016

76 .Serikov A.S., Gladkov V.E., Zherebtsov D.A., Kolmogortsev A.M., Viktorov V.V. Formation of nickel titanate in the system of smallsized oxide of TiO2 (anatase) and NiO. Vestnik of the SUSU. 2010. 31(4): 97. [in Russian].

77. de Haart L.G.J., de Vries A.J., Blasse G. Photoelectrochemical properties of MgTiO3 and other titanates with the ilmenite structure. Mater. Res. Bull. 1984. 19(7): 817.  https://doi.org/10.1016/0025-5408(84)90042-4

78. Lin Y.-J., Chang Y.-H., Yang W.-D., Tsai B.-S. Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified Pechini method. J. Non-Cryst. Solids. 2006. 352(8): 789.  https://doi.org/10.1016/j.jnoncrysol.2006.02.001

79. Lopes K.P., Cavalcante L.S., Simões A.Z., Varela J.A., Longo E., Leite E.R. NiTiO3 powders obtained by polymeric precursor method: Synthesis and characte-rization. J. Alloys Compd. 2009. 468(1–2): 327.  https://doi.org/10.1016/j.jallcom.2007.12.085

80. Shu X., He J., Chen D. Visible-Light-Induced Photocatalyst Based on Nickel Titanate Nanoparticles. Ind. Eng. Chem. Res. 2008. 47(14): 4750.  https://doi.org/10.1021/ie071619d

81. Zhou G.-W., Kang Y.S. Synthesis and Characterization of the Nickel Titanate NiTiO3 Nanoparticles in CTAB Micelle. J. Disp. Sci. Technol. 2006. 27(5): 727.  https://doi.org/10.1080/01932690600660376

82. Lever A.B.P. Inorganic electronic spectroscopy. V. 2. (Amsterdam: Elsevier, 1984).

83. Ganesh I., Gupta A.K., Kumar P.P., Sekhar P.S.C., Radha K., Padmanabham G., Sundararajan G. Preparation and Characterization of Ni-Doped TiO2 Materials for Photocurrent and Photocatalytic Applications. The Scientific World Journal. 2012. (1): 127326.

84. Vijayalakshmi R., Rajendran V. Effect of Reaction Temperature on Size and Optical Properties of NiTiO3 Nanoparticles. E-J. Chem. 2012. 9(1): 282.

85. Nazarkovsky M.A., Goncharuk E.V., Pakhlov E.M., Oranska E.I., Skwarek E., Skubiszewska-Zięba J., Leboda R., Janusz W., Gun'ko V.M. Synthesis and properties of CuO-modified titania composites deposited on nanosilica A-300 surface. Him. Fiz. Tehnol. Poverhni. 2012. 3(2): 172. [in Russian].

86. Carley A.F., Jackson S.D., O'Shea J.N., Roberts M.W. The formation and characterisation of Ni3+ - an X-ray photoelectron spectroscopic investigation of potassium-doped Ni(110)-O. Surf. Sci. 1999. 440(3): 868.  https://doi.org/10.1016/S0039-6028(99)00872-9

87. Moroney L.M., Smart R.S.C., Roberts M.W. Studies of the thermal decomposition of betaNiO(OH) and nickel peroxide by X-ray photoelectron spectroscopy. J. Chem. Soc. Faraday Trans. 1. 1983. 79(9): 1769.  https://doi.org/10.1039/f19837901769

88. Roberts M.W., Smart R.S.C. The defect structure of nickel oxide surfaces as revealed by photoelectron spectroscopy. J. Chem. Soc. Faraday Trans. 1. 1984. 80: 2957.  https://doi.org/10.1039/f19848002957

89. Rivas J., Gimeno O., Borralho T., Sagasti J. UV-C and UV-C/peroxide elimination of selected pharmaceuticals in secondary effluents. Desalination. 2011. 279(1–3): 115.  https://doi.org/10.1016/j.desal.2011.05.066

90. Qi F., Chu W., Xu B. Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate. Appl. Catal., B. 2013. 134–135: 324.  https://doi.org/10.1016/j.apcatb.2013.01.038

91. Klamerth N., Miranda N., Malato S., Agüera A., Fernández-Alba A.R., Maldonado M.I., Coronado J.M. Degradation of emerging contaminants at low concentrations in MWTPs effluents with mild solar photo-Fenton and TiO2. Catal. Today. 2009. 144(1–2): 124.  https://doi.org/10.1016/j.cattod.2009.01.024

92. Alvarez P.M., Jaramillo J., Lopez-Pinero F., Plucinski P.K. Preparation and characterization of magnetic TiO2 nanoparticles and their utilization for the degradation of emerging pollutants in water. Appl. Catal., B. 2010. 100(1–2): 338.  https://doi.org/10.1016/j.apcatb.2010.08.010

93. Herrmann J.-M. Photocatalysis fundamentals revisited to avoid several misconceptions. Appl. Catal., B. 2010. 99(3–4): 461.  https://doi.org/10.1016/j.apcatb.2010.05.012




DOI: https://doi.org/10.15407/hftp05.04.421

Copyright (©) 2014 M. A. Nazarkovsky, V. M. Gun'ko, G. Wójcik, B. Czech, A. Sobieszek, J. Skubiszewska-Zięba, W. Janusz, E. Skwarek

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.