Chemistry, Physics and Technology of Surface, 2014, 5 (4), 454-460.

Thermal Analysis, Phase and Morphological TransformationS in the Composites Aluminosilicate Nanotubes/Acetates of Ni, Cu, Zn



DOI: https://doi.org/10.15407/hftp05.04.454

O. I. Oranska, Yu. I. Gornikov, A. V. Brichka, S. Ya. Brichka

Abstract


The thermal stability and solid-phase reactions in composites halloysite nanotubes – acetates of Ni, Cu, Zn in the temperature range from 20 to 1100°C have been investigated. It has been shown that chemical reactions occur with metal oxides formed due to thermal degradation of acetates and components of aluminosilicate matrix formed during dehydration and dehydroxylation of halloysite nanotubes. Reaction products are nanocrystalline ZnAl2O4 distributed in a matrix of amorphous SiO2 and CuO solid solution in α-cristobalite. Degree of destruction of the tubular structure of nanotubes in the composites with acetate increases as follows: Ni2+ < Zn2+ < Cu2+.

Keywords


halloysite nanotubes; oxides NiO; CuO; ZnO; nanocrystalline ZnAl2O4; solid-phase reactions; tubular structure

Full Text:

PDF

References


1. Joussein E., Petit S., Churchman J. Theng B.K.G., Righi D., Delvaux B. Halloysite clay minerals: a review. Clay Miner. 2005. 40(4): 383.  https://doi.org/10.1180/0009855054040180

2.. Brichka S.Ya. Natural aluminosilicate nanotubes: structure and properties. Nanostruct. Mater. Sci. 2009. 2: 40. [in Russian].

3. Brichka S.Ya. Application of aluminosilicate nanotubes. Nanostruct. Mater. Sci. 2012. 4: 40. [in Russian].

4. Zhou Ch.H. An overview on strategies towards clay-based designer catalysts for green and sustainable catalysis. Appl. Clay Sci. 2011. 53(2): 87.  https://doi.org/10.1016/j.clay.2011.04.016

5. Oranska O.I., Brichka S.Ya., Gornikov Yu.I., Brichka A.V. Solid-state reactions of aluminosilicate nanotubes with oxides 3d metals NiO, CuO and ZnO. IV Int. Conf. NANSYS-2013 (Kyiv, 2013). Abstract 156.

6. Palomba M., Porcu R. Thermal behavior of some minerals. J. Therm. Anal. Calorim. 1988. 34(3): 711.  https://doi.org/10.1007/BF02331773

7. Madejova J., Keckes J., Palkova H., Komadel P. Identification of components in smectite/kaolinite mixtures. Clay Miner. 2002. 37(2): 377.  https://doi.org/10.1180/0009855023720042

8. Ptacek P., Soukal F., Opravil T., Nosková M., Havlica J., Brandštetr J. The kinetics of Al-Si spinel phase crystallization from calcined kaolin. J. Solid State Chem. 2010. 183(11): 2565.  https://doi.org/10.1016/j.jssc.2010.08.030

9. Martisius T., Giraitis R. Influence of copper oxide on mullite formation from kaolinite. J. Mater. Chem. 2003. 13: 121.  https://doi.org/10.1039/B206711K

10. Oranska O.I. Phase transformation in composites based on fumed separated and mixed silica and alumina and cooper oxide. Nanostruct. Mater. Sci. 2011. 1: 16. [in Russian].

11. Martinez J.R., Ortega-Zarzosa G., Domingues-Espinos O., Ruiz F. Low temperature devitrification of Ag/SiO2 and Ag(CuO)/SiO2 composites. J. Non-Cryst. Solids . 2001. 282(2–3): 317.  https://doi.org/10.1016/S0022-3093(01)00346-5

12. Hedvall J.A. Einführung in die Festkörperchemie Die Wissenschaft–Einzeldarstellungen aus der Naturwissenschaft und der Technik Band. (Verlag: Braunschweig, 1952).

13. Hauffe K. Reaktionen in und an Festen Stoffen. (Berlin: Springer, 1955).  https://doi.org/10.1007/978-3-642-52680-0

14. Garner W.E. Chemistry of the Solid State. (London: Butterworths, 1955).

15. Colinas J.M.F., Areán C.O. Kinetics of solid-state spinel formation: effect of cation coordination preference. J. Solid State Chem. 1994. 109(1): 43.  https://doi.org/10.1006/jssc.1994.1068




DOI: https://doi.org/10.15407/hftp05.04.454

Copyright (©) 2014 O. I. Oranska, Yu. I. Gornikov, A. V. Brichka, S. Ya. Brichka

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.