Chemistry, Physics and Technology of Surface, 2014, 5 (4), 467-472.

Laser desorption/ionization (LDI MS) and thermoprogrammed desorption mass spectrometry (TPD MS) of Europium(III) coordination compound with n-{bis[methyl(Phenyl)amino]phosphorYl}-benzenesulfoneamide



DOI: https://doi.org/10.15407/hftp05.04.467

O. V. Severinovskaya, A. V. Mischanchuk, V. A. Trush, A. Yu. Prytula, V. M. Amirkhanov, V. A. Pokrovskiy

Abstract


The coordination compound EuL3Phen (where L = N-{bis[methyl(phenyl)amino]phosphoryl}-benzenesulfoneamidate anion) has been synthesized and studied by laser-desorption and temperature-programmed mass spectrometry in the condensed phase and on the surface of a standard metal substrate. The temperature dependence of the main mass spectrum components in the method of temperature-programmed desorption mass spectrometry (TPD MS) is defined and interpreted, components of the laser desorption/ionization (LDI) mass spectrum of the synthesized substance have been identified. A comparative analysis of mass spectra obtained by both methods for the studied coordination compound has been carried out. A possibility of both mass spectrometric methods using for the investigation of metal-containing polymer components is discussed.

Keywords


laser desorption/ionization (LDI MS); temperature-programmed desorption mass spectrometry (TPD MS); lanthanides; phosphorylic ligands

Full Text:

PDF

References


1. Kido J., Okamoto Y. Organo lanthanide metal complexes for electroluminescent materials. Chem. Rev. 2002. 102(6): 2357.  https://doi.org/10.1021/cr010448y

2. Eliseeva S.V., Bünzli J-C.G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010. 39: 189.  https://doi.org/10.1039/B905604C

3. Katkova M.A., Vitukhnovsky A.G., Bochkarev N.M. Coordination compounds of rare earth metals with organic ligands for electroluminescent diodes. Uspekhi Khimii. 2005. 74(12): 1193.  https://doi.org/10.1070/RC2005v074n12ABEH002481

4. Tsukube H., Shinoda S. Lanthanide complexes in molecular recognition and chirality Sensing of biological substrates. Chem. Rev. 2002. 102(6): 2389. https://doi.org/10.1021/cr010450p

5. Mathis G. Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin. Chem. 1995. 41(9): 1391.

6. Amiot C.L., Xu S., Liang S., Pan L., Zhao J.X. Near-infrared fluorescent materials for sensing of biological targets. Sensors. 2008. 8(5): 3082. https://doi.org/10.3390/s8053082

7. Henderson W., McIndoe J.S. Mass Spectrometry of Inorganic, Coordination and Organometallic Compounds: Tools - Techniques – Tips. (John Wiley & Sons, Ltd, 2005). https://doi.org/10.1002/0470014318

8. Wyatt M. MALDI TOFMS analysis of coordination and organometallic complexes: a nic(h)e area to work in. J. Mass Spectrom. 2011. 46(7): 712. https://doi.org/10.1002/jms.1957

9. Chernii V.Ya., Severinovskaya O.V., Bon V.V., Tretyakova I.N., Volkov S.V. Novel zirconium(IV) and hafnium(IV) phthalocyanines with dibenzoylmethaneas out-of-plane ligand: Synthesis, X-ray structure and fluorescent properties. Dyes Pigm. 2012. 94(2): 187.  https://doi.org/10.1016/j.dyepig.2011.12.012

10. Kirsanov A. V., Fesenko N.G. Derivatives of N-phosphoric acid Nitrobenzolsulfamides. J. Gen. Chem. 1959. 12: 4085.

11. Logvinenko V.A. Thermal Analysis of Coordination Compounds and Clathrates. (Novosibirsk: Publishing House "Science", 1982).

12. Pokrovskiy V.A. Temperature-programmed mass spectrometry in surface chemistry studies. Rapid Communications in Mass Spectrom. 1995. 9(7): 588. https://doi.org/10.1002/rcm.1290090711




DOI: https://doi.org/10.15407/hftp05.04.467

Copyright (©) 2014 O. V. Severinovskaya, A. V. Mischanchuk, V. A. Trush, A. Yu. Prytula, V. M. Amirkhanov, V. A. Pokrovskiy

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.