Chemistry, Physics and Technology of Surface, 2014, 5 (4), 473-479.

Quantum Chemical Study on Interaction of Dimethyl Carbonate with Polydimethylsiloxane



DOI: https://doi.org/10.15407/hftp05.04.473

E. M. Demianenko, A. G. Grebenyuk, V. V. Lobanov, V. A. Tertykh, I. S. Protsak, Yu. M. Bolbukh, R. B. Kozakevych

Abstract


Possible mechanisms of interaction of dimethyl carbonate with polydimethylsiloxane have been examined by density functional theory method with exchange-correlation functional B3LYP and basis set 6-31G(d,p). A carbon atom attack of the carbonyl group of dimethyl carbonate molecule at the oxygen atom of the siloxane bridge of polydimethylsiloxane with simultanious ester oxygen atom attack of dimethyl carbonate at the silicon atom of organosilicon polymer have been found to be the most probable.

Keywords


dimethyl carbonate; polydimethylsiloxane; reaction mechanism; density functional theory method; cluster approach

Full Text:

PDF

References


1. Tertykh V.A., Belyakova L.A. Chemical Reactions Involving Silica Surface. (Kyiv: Naukova Dumka, 1991). [in Russian].

2. Myronyuk I.F., Kurta S.A., Gergel T.V., Voronin E.P., Chelyadyn V.L., Kurt A.S. The chemisorption of oligomeric polydimethylsiloxane on the surface of fumed silica. Phys. Chem. Solid State. 2009. 10(1): 157. [in Ukrainian].

3. Schimmel K.-H., Schulz J. Polysiloxane. 4. Zum Verhalten linearer Poly(dimethyl-siloxane) in Diethylamin. Acta Polym . 1987. 38(9): 536.  https://doi.org/10.1002/actp.1987.010380906

4. Okamoto M., Miyazaki K., Kado A., Suzuki S., Suzuki E. Deoligomerization of cyclooligosiloxanes with dimethyl carbonate over solid-base catalysts. Catal. Lett. 2003. 88(3): 115.   https://doi.org/10.1023/A:1024093218443

5. Okamoto M., Suzuki S., Suzuki E. Polysiloxane depolymerization with dimethyl carbonate using alkali metal halide catalysts. Appl. Catal. A. 2004. 261(2): 239.  https://doi.org/10.1016/j.apcata.2003.11.005

6. Protsak I.S., Tertykh V.A., Goncharuk O.V., Bolbukh Yu.M., Kozakevych R.B. Hydrophobization of the fumed silica surface with polydimethylsiloxanes in the presence of alkyl carbonates. Him. Fiz. Tehnol. Poverhni. 2014. 5(2): 226. [in Ukrainian].

7. Protsak I.S., Bolbukh Yu.M., Kozakevych R.B., Tertykh V.A. Viscosimetric study of polydimethylsiloxane depolymerization under action of dimethyl carbonate. Chem. Industry. 2013. 117: 58. [in Ukrainian].

8. Arico F., Tundo P. Dimethyl carbonate as a modern green reagent and solvent. Uspekhi Khimii. 2010. 79(6): 532. [in Russian].https://doi.org/10.1070/RC2010v079n06ABEH004113

9. Tundo P. New developments in dimethyl carbonate chemistry. Pure Appl. Chem. 2001. 73(7): 1117. https://doi.org/10.1351/pac200173071117

10. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. General atomic and molecular electronic structure system. J. Comput. Chem. 1993. 14(11): 1347.   https://doi.org/10.1002/jcc.540141112

11. Becke A.D. Density functional thermo-chemistry. III. The role of exact exchange. J. Chem. Phys. 1993. 98: 5648.  https://doi.org/10.1063/1.464913

12. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev., B. 1988. 37: 785.   https://doi.org/10.1103/PhysRevB.37.785

13. Wales D.J., Berry R.S. Limitations of the Murrell-Laidler theorem. J. Chem. Soc., Faraday Trans. 1992. 88(4): 543.  https://doi.org/10.1039/FT9928800543

14. Fukui K. The path of chemical reactions – the IRC approach. Acc. Chem. Res. 1981. 14(12): 363.  https://doi.org/10.1021/ar00072a001




DOI: https://doi.org/10.15407/hftp05.04.473

Copyright (©) 2014 E. M. Demianenko, A. G. Grebenyuk, V. V. Lobanov, V. A. Tertykh, I. S. Protsak, Yu. M. Bolbukh, R. B. Kozakevych

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.