Modelling of Evaporation of Clusters and Nanodroplets of Organic Molecules Using Quantum Chemical and the Kinetic Gas Theory Methods
DOI: https://doi.org/10.15407/hftp06.01.005
Abstract
Keywords
References
1. Tamim J., Hallett W.L.H. A continuous thermodynamics model for multi-component droplet vaporization. Chem. Eng. Sci. 1995. 50(18): 2933. https://doi.org/10.1016/0009-2509(95)00131-N
2. Lippert A.M., Reitz R.D. Modeling of multicomponent fuels using continuous distributions with application to droplet evaporation and sprays. SAE Technical Paper. 1997. 972882.
3. Hallett W.L.H. A simple model for the vaporization of droplets with large numbers of components. Combust. Flame. 2000. 121(1–2): 334. https://doi.org/10.1016/S0010-2180(99)00144-3
4. Langmuir I. The dissociation of hydrogen into atoms. Part II. Calculation of the degree of dissociation and the heat of formation. J. Amer. Chem. Soc. 1915. 37(3): 417.https://doi.org/10.1021/ja02168a002
5. Langmuir I. The evaporation of small spheres. Phys. Rev. 1918. 12: 368. https://doi.org/10.1103/PhysRev.12.368
6. Houghton H.G. Evaporation of small drops. Physics. 1933. 4: 419.https://doi.org/10.1063/1.1745155
7. Bradley R.S., Evans M.G., Whytlaw-Gray R.W. The rate of evaporation of droplets. evaporation and diffusion coefficients, and vapour pressures of dibutyl phthalate and butyl stearate. Proceedings of the Royal Society of London A. 1946. 186(1006): 368. https://doi.org/10.1098/rspa.1946.0050
8. Kinzer G.D., Gunn R. The evaporation, temperature and thermal relaxation-time of freely falling waterdrops. J. Atmos. Sci. 1951. 8(2): 71.https://doi.org/10.1175/1520-0469(1951)008<0071:tetatr>2.0.co;2
9. Deegan R.D. Pattern formation in drying drops. Phys. Rev. E. 2000. 61: 475.https://doi.org/10.1103/PhysRevE.61.475
10. de Gans B.J., Duineveld P.C., Schubert U.S. Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 2004. 16(3): 203.https://doi.org/10.1002/adma.200300385
11. Dugas V., Broutin J., Souteyrand E. Droplet evaporation study applied to DNA chip manufacturing. Langmuir. 2005. 21(20): 9130.https://doi.org/10.1021/la050764y
12. Wright P.K. 21st Century Manufacturing. (New Jersey: Prentice-Hall Inc., 2001).
13. Zhu G.-S., Reitz R.D. A model for high-pressure vaporization of droplets of complex liquid mixtures using continuous thermodynamics. Int. J. Heat Mass Transfer. 2002. 45(3): 495.https://doi.org/10.1016/S0017-9310(01)00173-9
14. Cao B.-Y., Xie J.-F., Sazhin S.S. Molecular dynamics simulation on evaporation and condensation of n-dodecane at liquid-vapour phase equilibria. J. Chem. Phys. 2011. 134(16): 164309.https://doi.org/10.1063/1.3579457
15. Xie J.-F., Sazhin S.S., Cao B.-Y. Molecular dynamics study of the processes in the vicinity of the n-dodecane vapour/liquid interface. Phys. Fluids. 2011. 23: 112104.https://doi.org/10.1063/1.3662004
16. Sazhin S.S. Advanced models of fuel droplet heating and evaporation. Prog. Energy Combust. Sci. 2006. 32(2): 162.https://doi.org/10.1016/j.pecs.2005.11.001
17. Chapman S., Cowling T.G. The Mathematical Theory of Nonuniform Gases. (Cambridge: Cambridge University Press, 1970).
18. Mizuguchi H., Nagayama G., Tsuruta T. Molecular dynamics study on evaporation coefficient of biodiesel fuel. (Sendai, Japan: Seventh International Conference on Flow Dynamics, 2010).
19. Xie J.-F., Sazhin S.S., Shishkova I.N., Cao B.-Y. Proceedings of International Symposium on Advances in Computational Heat Transfer. CD, Begell House Inc., paper CHT12-MP02. (1-6 July, 2012 Bath, UK).
20. Xie J.-F., Sazhin S.S., Cao B.-Y. Molecular dynamics study of condensation/evaporation and velocity distribution of n-dodecane at liquid-vapour phase equilibria. J. Therm. Sci. Technol. 2012. 7(1): 288.https://doi.org/10.1299/jtst.7.288
21. Ortega I. K., Kupiainen O., Kurtén T., Olenius T., Wilkman O., McGrath M.J., Loukonen V., Vehkamaki H. From quantum chemical formation free energies to evaporation rates. Atmos. Chem. Phys. 2012. 12: 225.https://doi.org/10.5194/acp-12-225-2012
22. Kupiainen O., Ortega I.K., Kurten T., Vehkamaki H. Amine substitution into sulfuric acid–ammonia clusters. Atmos. Chem. Phys. 2012. 12(8): 3591.https://doi.org/10.5194/acp-12-3591-2012
23. Gun'ko V.M., Nasiri R., Sazhin S.S., Lemoine F., Grisch F. A quantum chemical study of the processes during the evaporation of real-life Diesel fuel droplets. Fluid Phase Equilib. 2013. 356: 146.https://doi.org/10.1016/j.fluid.2013.07.022
24. Gun'ko V. M., Nasiri R., Sazhin S.S. A study of the evaporation and condensation of n-alkane clusters and nanodroplets using quantum chemical methods. Fluid Phase Equilib. 2014. 366: 99.https://doi.org/10.1016/j.fluid.2014.01.010
24. Sazhin S.S., Al Qubeissi M., Nasiri R., Gun'ko V.M., Elwardany A.E., Lemoine F., Grisch F., Heikal M.R. A multi-dimensional quasi-discrete model for the analysis of Diesel fuel droplet heating and evaporation. Fuel. 2014. 129: 238. https://doi.org/10.1016/j.fuel.2014.03.028
26. Chaplin M. Water structure and science, http://www.lsbu.ac.uk/water/.
27. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013).https://doi.org/10.1201/b14202
28. Hunter C.A. Van der Waals interactions in non-polar liquids. Chem. Sci. 2013. 4: 834.https://doi.org/10.1039/C2SC21666C
29. Schleyer P.v.R. Encyclopedia of Computational Chemistry. (New York: John Wiley and Sons, 1998).
30. Atkins P.W., Friedman R. Molecular Quantum Mechanics. Fourth edition. (Oxford: Oxford University Press, 2005).
31. COSMOthermX, Version C30_1301, December 12th, COSMOlogic GmbH & Co. KG. (Germany: Leverkusen, 2012).
32. Fujitani Y., Saitoh K., Fushimi A., Takahashia K., Hasegawa Sh., Tanabe K., Kobayashi Sh., Furuyama A., Hirano S., Takami A. Effect of isothermal dilution on emission factors of organic carbon and n-alkanes in the particle and gas phases of diesel exhaust. Atmos. Environ. 2012. 59: 389. https://doi.org/10.1016/j.atmosenv.2012.06.010
33. Dirbude S., Eswaran V., Kushari A. Numerical modelling of droplet evaporation with convection for n-alkanes and kerosene fuel. Atomization Sprays. 2011. 21(9): 787.https://doi.org/10.1615/AtomizSpr.2012004161
34. Guéna G., Poulard C., Cazabat A.M. Evaporating drops of alkane mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007. 298(1–2): 2.https://doi.org/10.1016/j.colsurfa.2006.12.008
35. Heldmann M., Knorsch T., Wensing M. Investigation of fuel atomization and evaporation of a DISI injector spray under homogeneous charge conditions. SAE Int. J. Engines. 2013. 6(2): 1213.https://doi.org/10.4271/2013-01-1597
36. Zigan L., Schmitz I., Flügel A., Wensing M., Leipertz A. Structure of evaporating single- and multicomponent fuel sprays for 2nd generation gasoline direct injection. Fuel. 2011. 90(1): 348.https://doi.org/10.1016/j.fuel.2010.08.001
37. Frisch M.J., Trucks G.W., Schlegel H.B. etal.Gaussian 09, Revision D.01. (Gaussian, Inc., Wallingford CT, 2013).
38. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki Sh., Matsunaga N., Nguyen K.A., Su Sh., Windus Th.L., Dupuis M., Montgomery J.A. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993. 14(11): 1347. https://doi.org/10.1002/jcc.540141112
39. Gordon M.S., Schmidt M.W. Theory and Applications of Computational Chemistry, the First Forty Years. (Amsterdam: Elsevier, 2005).
40. Granovsky A.A. Firefly version 8.1. www http://classic.chem.msu.su/gran/gamess/index.html.
41. Stewart J.J.P. MOPAC 2012. Colorado Springs, CO: Stewart Computational Chemistry, USA, http://openmopac.net.
42. Maia J.D.C., Carvalho G.A.U., Mangueira C.P. GPU linear algebra libraries and GPGPU programming for accelerating MOPAC semiempirical quantum chemistry calculations. J. Chem. Theory Comput. 2012. 8(9): 3072.https://doi.org/10.1021/ct3004645
43. Pedretti A., Villa L., Vistoli G. VEGA: an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J. Comput. Aided Mol. Des. 2004. 18(3): 167.https://doi.org/10.1023/B:JCAM.0000035186.90683.f2
44. Zhurko G.A., Zhurko D.A. Chemcraft (version 1.7, build 375, 2013). http://www.chemcraftprog.com.
45. Dennington R., Keith T., Millam J. GaussView, Version 5.09. Semichem Inc., Shawnee Mission KS, 2013.
46. Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009. 113(18): 6378. https://doi.org/10.1021/jp810292n
47. Yaws C.L. Thermophysical Properties of Chemicals and Hydrocarbons. (New York: Norwich, William Andrew Inc., 2008).
48. Adamson A.W., Gast A.P. Physical Chemistry of Surfaces. 6th ed. (New York: Wiley, 1997).
49. Xia T.K., Landman U. Molecular evaporation and condensation of liquid n-alkane films. J. Chem. Phys. 1994. 101: 2498.https://doi.org/10.1063/1.467689
50. Cheeseright T., Mackey M., Rose S., Vinter J.G. Molecular field technology applied to virtual screening and finding the bioactive conformation. Expert Opin. Drug Discov. 2007. 2(1): 131.https://doi.org/10.1517/17460441.2.1.131
51. Honnery D., Nguyen D., Soria J. Microdroplet evaporation under increasing temperature conditions: Experiments and modelling. Fuel. 2013. 105: 247.https://doi.org/10.1016/j.fuel.2012.04.008
52. Frenkel J. Theorie der Adsorption und verwandter Erscheinungen. Zeitschrift für Physik. 1924. 26(1): 117.https://doi.org/10.1007/BF01327320
DOI: https://doi.org/10.15407/hftp06.01.005
Copyright (©) 2015 V. M. Gun'ko
This work is licensed under a Creative Commons Attribution 4.0 International License.