Chemistry, Physics and Technology of Surface, 2015, 6 (1), 20-31.

Microstructure and Physical Properties of Glycerol Doped by Oxidized Multiwalled Carbon Nanotubes



DOI: https://doi.org/10.15407/hftp06.01.020

I. A. Melnyk, L. A. Bulavin, S. V. Hrapatyi, G. I. Dovbeshko, E. A. Solovyova, V. A. Mykhailyk, N. I. Lebovka

Abstract


The effect of acid treatment on the structure and properties of suspensions of multiwalled carbon nanotubes (MWCNTs) in glycerol has been investigated. The concentrations of MWCNTs were within 0–2% by weight. Suspensions were treated during 5–60 min at T = 343 K by a mixture of concentrated nitric and sulphuric acids with the volume ratio of 1:3. The degree of acid treatment influence on the structure of suspension was analyzed using methods of thermal analysis and infrared spectroscopy. Oxidation of MWCNTs could affect significantly their thermal stability and degree of destruction. The changes in the structure of MWCNT clusters in glycerol, electrical conductivity and percolation behaviour of the systems are discussed. The acid treatment is shown to cause significant decrease in conductivity of suspension and enhancement of its temperature dependence. Reduction of the length of MWCNTs after acid treatment is reported.

Keywords


multiwalled carbon nanotubes; oxidation; glycerol suspensions; microstructure; electrical conductivity; percolation

Full Text:

PDF

References


1. Pandey G., Thostenson E.T. Carbon nanotube-based multifunctional polymer nanocomposites. Polym. Rev. 2012. 52(3): 355.https://doi.org/10.1080/15583724.2012.703747

2. Kovacs J.Z., Mandjarov R.E., Blisnjuk T., Prehn K., Sussiek M., Müller J., Schulte K., Bauhofer W. On the influence of nanotube properties, processing conditions and shear forces on the electrical conductivity of carbon nanotube epoxy composites. Nanotechnology. 2009. 20(15): 155703. https://doi.org/10.1088/0957-4484/20/15/155703

3. Dolgov L., Kovalchuk O., Lebovka N., Tomylko S., Yaroshchuk O. Liquid Crystal Dispersions of Carbon Nanotubes: Dielectric, Electro-Optical and Structural Peculiarities. Carbon Nanotubes. 2010. Chapter 24: 451.

4. Hasan T., Sun Z., Wang F., Bonaccorso F., Tan P.H., Rozhin A.G., Ferrari A.C. Nanotube – polymer composites for ultrafast photonics. Adv. Mater. 2009. 21(38–39): 3874.https://doi.org/10.1002/adma.200901122

5 .Endo M., Strano M.S., Ajayan P.M. Potential applications of carbon nanotubes. Carbon Nanotubes. Topics in Applied Physics. 2008. 111: 13.https://doi.org/10.1007/978-3-540-72865-8_2

6. Harrison B.S., Atala A. Carbon nanotube applications for tissue engineering. Biomaterials. 2007. 28(2): 344.https://doi.org/10.1016/j.biomaterials.2006.07.044

7. Valentini F., Carbone M., Palleschi G. Carbon nanostructured materials for applications in nano-medicine, cultural heritage, and electrochemical biosensors. Anal. Bioanal. Chem. 2013. 405(2–3): 451.https://doi.org/10.1007/s00216-012-6351-6

8. Lisetski L.N., Minenko S.S., Ponevchinsky V.V., Soskin M.S., Goncharuk A.I., Lebovka N.I. Microstructure and incubation processes in composite liquid crystalline material (5CB) filled with multiwalled carbon nanotubes. Nanoscience and Nanotechnology: Materials. 2011. 42(1): 5.

9. Pegel S., Pötschke P., Petzold G., Alig I., Dudkin S.M., Lellinger D. Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer. 2008. 49(4): 974.https://doi.org/10.1016/j.polymer.2007.12.024

10. Ghosh S., Sood A.K., Kumar N. Carbon nanotube flow sensors. Science. 2003. 299(5609): 1042. https://doi.org/10.1126/science.1079080

11. Venediktova A.V., Vlasov A.Y., Obraztsova E.D., Videnichev D.A., Kislyakov I.M., Sokolova E.P. Stability and optical limiting properties of a single wall carbon nanotubes dispersion in a binary water-glycerol solvent. Appl. Phys. Lett. 2012. 100: 251903. https://doi.org/10.1063/1.4729790

12. Vlasov A.Y., Venediktova A.V., Videnichev D.A., Kislyakov I.M., Obraztsova E.D., Sokolova E.P. Effects of antifreezes and bundled material on the stability and optical limiting in aqueous suspensions of carbon nanotubes. Physica Status Solidi (b). 2012. 249(12): 2341. https://doi.org/10.1002/pssb.201200089

13. Yu H., Qu Y., Dong Z., Li W.J., Wang Yu., Ren W., Cui Z. Separation of mixed SWNTs and MWNTs by centrifugal force – an experimental study. Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference (Aug. 2, 2007, Hong Kong): 1212.

14. Ma X., Yu J., Wang N. Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers. Compos. Sci. Technol. 2008. 68(1): 268.https://doi.org/10.1016/j.compscitech.2007.03.016

15. Liu Z., Zhao L., Chen M., Yu J. Effect of carboxylate multi-walled carbon nanotubes on the performance of thermoplastic starch nanocomposites. Carbohydr. Polym. 2011. 83(2): 447.https://doi.org/10.1016/j.carbpol.2010.08.007

16. Dadfar S.M.M., Kavoosi G. Mechanical and water binding properties of carboxymethyl cellulose/multiwalled carbon nanotube nanocomposites. Polym. Compos. 2014. 36(1): 7.

17. Yurdakul H., Durukan O., Seyhan T. Celebi H., Oksuzoglu M., Turan S. Microstructural characterization of corn starch-based porous thermoplastic composites filled with multiwalled carbon nanotubes. J. Appl. Polym. Sci. 2013. 127(1): 812. https://doi.org/10.1002/app.37794

18. Bulavin L.A., Lebovka N.I., Kyslyi Y.A., Chrapatyi S.V., Goncharuk A.I., Mel'nyk I.A., Koval'chuk V.I. Microstructural, rheological, and conducto-metric studies of multiwalled carbon nanotube suspensions in glycerol. Ukr. J. Phys. 2010. 55: 1.

19. Xie H., Yu W., Li Y., Chen L. Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Res. Lett. 2011. 6: 124.https://doi.org/10.1186/1556-276X-6-124

20. Wang B., Lou W., Wang X., Hao J. A gel-sol transition phenomenon of oxidation multi-walled carbon nanotubes-glycerol nanofluids induced by polyvinyl alcohol. New J. Chem. 2012. 36: 1273.https://doi.org/10.1039/c2nj20977b

21. Song P.C., Liu C.H., Fan S.S. Improving the thermal conductivity of nanocomposites by increasing the length efficiency of loading carbon nanotubes. Appl. Phys. Lett. 2006. 88: 153111.https://doi.org/10.1063/1.2194267

22. Chen L., Xie H., Yu W., Li Y. Rheological behaviors of nanofluids containing multi-walled carbon nanotubes. J. Dispersion Sci. Technol. 2011. 32(4): 550.https://doi.org/10.1080/01932691003757223

23. Liu Q., Wu J., Tan T., Zhang L., Chen D., Tian W. Preparation, properties and cytotoxicity evaluation of a biodegradable polyester elastomer composite. Polym. Degrad. Stab. 2009. 94(9): 1427.https://doi.org/10.1016/j.polymdegradstab.2009.05.023

24. Bergin S.D., Sun Z., Streich P., Hamilton J., Coleman J.N. New solvents for nanotubes: Approaching the dispersibility of surfactants. J. Phys. Chem. C. 2010. 114(1): 231.https://doi.org/10.1021/jp908923m

25. Hughes J.M., Aherne D., Bergin S.D. O'Neill A., Streich P.V., Hamilton J.P., Coleman J.N. Using solution thermodynamics to describe the dispersion of rod-like solutes: application to dispersions of carbon nanotubes in organic solvents. Nanotechnology. 2012. 23(26): 265604. https://doi.org/10.1088/0957-4484/23/26/265604

26. Kahattha C., Woointranont P., Chodjaru-sawad T., Pecharapa W. Study of Acid-Treated Multiwall Carbon Nanotubes by Electron Microscopy and Raman Spectroscopy. Journal of the Microscopy Society of Thailand. 2010. 24(2): 133.

27. Bikiaris D., Vassiliou A., Chrissafis K., Paraskevopoulos K.M. Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polym. Degrad. Stab. 2008. 93(5): 952. https://doi.org/10.1016/j.polymdegradstab.2008.01.033

28. Geng H., Kim K.K., So K.P., Lee Y.S., Chang Y., Lee Y.H. Effect of Acid Treatment on Carbon Nanotube-Based Flexible Transparent Conducting Films. J. Amer. Chem. Soc. 2007. 129(25): 7758.https://doi.org/10.1021/ja0722224

29. Datsyuk V., Kalyva M., Papagelis K., Parthenios J., Tasis D., Siokou A., Kallitsis I., Galiotis C. Chemical oxidation of multiwalled carbon nanotubes. Carbon. 2008. 46(6): 2.https://doi.org/10.1016/j.carbon.2008.02.012

30. Melezhik A.V., Sementsov Y.I., Yanchenko V.V. Synthesis of fine carbon nanotubes on coprecipitated metal oxide catalysts. Russ. J. Appl. Chem. 2005. 78(6): 917.https://doi.org/10.1007/s11167-005-0420-y

31. Lebovka N., Dadakova T., Lysetskiy L., Melezhyk O., Puchkovska G., Gavrilko T., Baran J., Drozd M. Phase transitions,intermolecular interactions and electrical conductivity behavior in carbon multiwalled nanotubes/nematic liquid crystal composites. J. Mol. Struct. 2008. 877(1–3): 135.https://doi.org/10.1016/j.molstruc.2007.12.038

32. Hoshen J., Kopelman R. Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm. Phys. Rev. B. 1976. 14: 3438.  https://doi.org/10.1103/PhysRevB.14.3438

33. Feder J. Fractals. (New York: Plenum Press, 1988).https://doi.org/10.1007/978-1-4899-2124-6

34. Liu L., Yang Y., Zhang Y. A study on the electrical conductivity of multi-walled carbon nanotube aqueous solution. Physica E. 2004. 24(3–4): 343.https://doi.org/10.1016/j.physe.2004.06.046

35. Hou P., Liu C., Tong Y. Xua Sh., Liua M., Cheng H. Purification of single-walled carbon nanotubes synthesized by the hydrogen arc-discharge method. J. Mater. Res. 2001. 16(9): 2526.https://doi.org/10.1557/JMR.2001.0346

36. Saleh T.A. The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Appl. Surf. Sci. 2011. 257(17): 7746.https://doi.org/10.1016/j.apsusc.2011.04.020

37. Scheibe B., Borowiak-Palen E., Kalenczuk R.J. Oxidation and reduction of multiwalled carbon nanotubes: preparation and characterization. Mater. Charact. 2010. 61(2): 185.https://doi.org/10.1016/j.matchar.2009.11.008

38. Shin Y.-R., Jeon I.-Y., Baek J.-B. Stability of multi-walled carbon nanotubes in commonly used acidic media. Carbon. 2012. 50(4): 1465.https://doi.org/10.1016/j.carbon.2011.11.017

39. Brichka S.Y., Prikhod'ko G.P., Sementsov Y.I., Brichka A.V., Dovbeshko G.I. , Paschuk O.P. Synthesis of carbon nanotubes from a chlorine-containing precursor and their properties. Carbon. 2004. 42(): 2581.

40. Dovbeshko G.I., Gnatyuk O.P., Nazarova A.N. Sementsov Yu. I., Obraztsova E. D. Vibrational Spectra of Carbonaceous Materials: A SEIRA Spectroscopy versus FTIR and Raman. Fullerenes, Nanotubes, and Carbon Nanostructures. 2005. 13: 393. https://doi.org/10.1081/FST-200039387

41. Stauffer D., Aharony A. Introduction to percolation theory. (London: Taylor and Francis, 1992).




DOI: https://doi.org/10.15407/hftp06.01.020

Copyright (©) 2015 I. A. Melnyk, L. A. Bulavin, S. V. Hrapatyi, G. I. Dovbeshko, E. A. Solovyova, V. A. Mykhailyk, N. I. Lebovka

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.