The Singlet-Triplet Splitting of Ethylene Interacting with the Cu(100) Surface and with Small Copper Clusters
DOI: https://doi.org/10.15407/hftp06.01.042
Abstract
Keywords
References
1. Klessinger M., Michl J. Excited states and photochemistry of organic molecules. (New York: VCH Publishers, Inc., 1995).
2. Barltrop J.A., Coyle J.D. Excited states in organic chemistry. (London: Wiley, 1975).
3. Kalnin'sh K.K., Panarin Ye.F. Excited states in polymer chemistry. (St. Petersburg: CPI SPGUTD, 2007). [in Russian].
4. Bondarchuk S.V., Minaev B.F. About possibility of the triplet mechanism of the Meerwein reaction. J. Mol. Struct. THEOCHEM. 2010. 952(1–3): 1. https://doi.org/10.1016/j.theochem.2010.04.025
5. Bondarchuk S.V., Minaev B.F. The singlet-triplet energy splitting of π-nucleophiles as a measure of their reaction rate with electrophilic partners. Chem. Phys. Lett. 2014. 607: 75.https://doi.org/10.1016/j.cplett.2014.05.040
6. Bondarchuk S.V., Minaev B.F. State-dependent global and local electrophilicity of the aryl cations. J. Phys. Chem. A. 2014. 118(17): 3201. https://doi.org/10.1021/jp501740p
7. Hoijtink G.J. The influence of paramagnetic molecules on singlet-triplet transitions. Mol. Phys. 1960. 3(1): 67. https://doi.org/10.1080/00268976000100071
8. Minaev B.F. The removal of spin forbidden character in the reactions of triplet molecular oxygen. J. Struct. Chem. 1982. 23(2): 170. https://doi.org/10.1007/BF00790751
9. Bonin H., Sauthier M., Felpin F.-X. Transition metal-mediated direct C–H arylation of heteroarenes involving aryl radicals. Adv. Synth. Catal. 2014. 356(4): 645. https://doi.org/10.1002/adsc.201300865
10. Hari D.P., König B. The photocatalyzed Meerwein arylation: Classic reaction of aryl diazonium salts in a new light. Angew. Chem. Int. Ed. 2013. 52(18): 2. https://doi.org/10.1002/anie.201210276
11. Minaev B.F., Agren H. Spin uncoupling in ethylene activation by Pd and Pt. Int. J. Quantum Chem. 1999. 72(6): 581. https://doi.org/10.1002/(SICI)1097-461X(1999)72:6<581::AID-QUA5>3.0.CO;2-R
12. Bondarchuk S.V., Minaev B.F. Electronic descriptors for analytical use of the benzidine-based compounds and the mechanism of oxidative coupling of anilines. J. Phys. Org. Chem. 2014. 27(8): 640. https://doi.org/10.1002/poc.3311
13. Hanke F., Dyer M.S., Björk J., Persson M. Structure and stability of weakly chemisorbed ethene adsorbed on low-index Cu surfaces: Performance of density functionals with van der Waals Interactions. J. Phys. Condens. Matter. 2012. 42(42): 4217. https://doi.org/10.1088/0953-8984/24/42/424217
14. Yamazaki D., Okada M., Franco Jr.F.C., Kasai T. Ethylene adsorption on regularly stepped copper surface: C2H4 on Cu(210). Surf. Sci. 2011. 605(9–10): 934. https://doi.org/10.1016/j.susc.2011.02.010
15. Lyalin A., Taketsugu T. Adsorption of ethylene on neutral, anionic, and cationic gold clusters. J. Phys. Chem. C. 2010. 114(6): 2484. https://doi.org/10.1021/jp909505y
16. Watson G.W., Wells R.P.K., Willock D.J., Hutchings G.J. π Adsorption of ethene on to the {111} surface of copper: A periodic ab initio study of the effect of k-point sampling on the energy, atomic and electronic structure. Surf. Sci. 2000. 459(1–2): 93. https://doi.org/10.1016/S0039-6028(00)00444-1
17. Fahmi A., van Santen R.A. Density functional study of ethylene adsorption on palladium clusters. J. Phys. Chem. 1996. 100(14): 5676. https://doi.org/10.1021/jp953002s
18. Öström H., Nordlund D., Ogasawara H., Weiss K., Triguero L., Pettersson L.G.M., Nilsson A. Geometric structure and chemical bonding of acetylene adsorbed on Cu(110). Surf. Sci. 2004. 565(2–3): 206. https://doi.org/10.1016/j.susc.2004.07.012
19. Triguero L., Pettersson L.G.M., Minaev B., Agren H. Spin uncoupling in surface chemisorption of unsaturated hydrocarbons. J. Chem. Phys. 1998. 108(3): 1193. https://doi.org/10.1063/1.475481
20. Nyberg C., Tengstål C.G., Andersson S. Vibrational excitations and structure of C2H2 adsorbed on Cu(100). Chem. Phys. Lett. 1982. 87(1): 87. https://doi.org/10.1016/0009-2614(82)83561-6
21. Arvanitis D., Baberschke K., Wenzel L., Dobler U. Experimental study of the chemisorbed state of C2H2, C2H4, and C2H6 on noble-metal surfaces. Phys. Rev. Lett. 1986. 57(25): 3175. https://doi.org/10.1103/PhysRevLett.57.3175
22. Minaev B.F., Agren H. Spin-catalysis phenomena. Int. J. Quantum. Chem. 1996. 98(8): 2152. https://doi.org/10.1002/(sici)1097-461x(1996)57:3<519::aid-qua25>3.0.co;2-x
23. Bernardo C.G.P.M., Gomes J.A.N.F. The adsorption of ethylene on the (100) surfaces of platinum, palladium and nickel: A DFT study. J. Mol. Struct. THEOCHEM. 2001. 542(1–3): 263. https://doi.org/10.1016/S0166-1280(00)00846-0
24. Chatt J., Duncanson L.A. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes. J. Chem. Soc. 1953. 3: 2939. https://doi.org/10.1039/jr9530002939
25. Dewar M.J.S. A review of π complex theory. Bull. Soc. Chim. Fr. 1951. 18: C71.
26. Wang X., Turner II W.E., Agarwal J., Schaefer III H.F. Twisted triplet ethylene: Anharmonic frequencies and spectroscopic parameters for C2H4, C2D4, and 13C2H4. J. Phys. Chem. A. 2014. 118(35): 7560. https://doi.org/10.1021/jp502282v
27. Nguyen M.T., Matus M.H., William A., Lester J., Dixon D.A. Heats of formation of triplet ethylene, ethylidene, and acetylene. J. Phys. Chem. A. 2008. 112(10): 2082. https://doi.org/10.1021/jp074769a
28. Gemein B., Peyerimhoff S.D. Radiationless transitions between the first excited triplet state and the singlet ground state in ethylene: A theoretical study. J. Phys. Chem. 1996. 100(50): 19257. https://doi.org/10.1021/jp9532632
29. Bondarchuk S.V., Minaev B.F. Theoretical Study of Relationships between Structural, Optical, Energetic, and Magnetic Properties and Reactivity Parameters of Benzidine and Its Oxidized Forms. J. Phys. Chem. A. 2014. 118(38): 8872. https://doi.org/10.1021/jp507479p
30. Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.J., Refson K., Payne M.C. First principles methods using CASTEP. Z. Kristallogr. 2005. 220(5): 567. https://doi.org/10.1524/zkri.220.5.567.65075
31. Materials Studio 5.5. (San Diego: Accelrys, Inc., CA, 2008).
32. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996. 77(18): 3865. https://doi.org/10.1103/PhysRevLett.77.3865
33. Tkatchenko A., Scheffler M. Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009. 102(7): 3005. https://doi.org/10.1103/PhysRevLett.102.073005
34. Frisch M.J.E.A., et. al. Gaussian 09, Revision A.02; Gaussian. (Inc.: Wallingford, CT, 2009).
35. Zhao Y., Truhlar D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008. 120(1–3): 215. https://doi.org/10.1007/s00214-007-0310-x
36. Krishnan R., Binkley J.S., Seeger R., Pople J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980. 72(1): 650. https://doi.org/10.1063/1.438955
37. Hay P.J., Wadt W.R. Ab initio effective core potentials for molecular calculations – potentials for the transition-metal atoms Sc to Hg. J. Chem. Phys. 1985. 82(1): 270. https://doi.org/10.1063/1.448799
38. Miertus S., Scrocco E., Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981. 55(1): 117. https://doi.org/10.1016/0301-0104(81)85090-2
39. Bader R.F.W. Atoms in molecules. A quantum theory. (Oxford: Clarendon Press, 1990).
40. Keith T.A. AIMAll, Version 10.07.25; TK Gristmill Software: Overland Park KS, USA, Available at www.aim.tkgristmill.com, 2010.
41. Lu T., Chen F. Multiwfn: A Multifunctional wavefunction analyzer. J. Comp. Chem. 2012. 33(5): 580.https://doi.org/10.1002/jcc.22885
42. Abramov Yu.A. On the possibility of kinetic energy density evaluation from the experimental electron-density distribution. Acta Crystallogr. A. 1997. 53(3): 264. https://doi.org/10.1107/S010876739601495X
43. Lu T., Chen F. Bond order analysis based on the Laplacian of electron density in fuzzy overlap space. J. Phys. Chem. A. 2013. 117(14): 3100. https://doi.org/10.1021/jp4010345
44. Ozin G.A., Huber H., McIntosh D. Cryochemical Studies of Zerovalent Copper-Ethylene Complexes, [C2H4]nCu and [C2H4]mCu2 [where n=1–3; m=4 or 6], and their Use in Forming Copper Clusters. Localized Bonding Models for Ethylene Chemisorption onto Bulk Copper. Inorg. Chem. 1977. 16(12): 3070. https://doi.org/10.1021/ic50178a018
45. Lyalin A., Taketsugu T. Adsorption of Ethylene on Neutral, Anionic, and Cationic Gold Clusters. J. Phys. Chem. C. 2010. 114(6): 2484. https://doi.org/10.1021/jp909505y
46. Bondarchuk S.V., Minaev B.F., Fesak A.Yu. Theoretical study of the triplet state aryl cations recombination: A possible route to unusually stable doubly charged biphenyl cations. Int. J. Quantum Chem. 2013. 113(24): 2580. https://doi.org/10.1002/qua.24509
47. Minaev B.F., Agren H. Spin uncoupling in chemical reactions. Adv. Quantum. Chem. 2001. 40: 191. https://doi.org/10.1016/S0065-3276(01)40016-5
48. Luo Y., Jonsson D., Norman P., Mikkelsen K.V. Some recent developments of high-order response theory. Int. J. Quantum. Chem. 1998. 70(1): 219. https://doi.org/10.1002/(SICI)1097-461X(1998)70:1<219::AID-QUA19>3.0.CO;2-9
49. Daniel C., Guillaumont D., Ribbing C., Minaev B. Spin-orbit coupling effects on metal-hedrogen bond homolysis of M(H)(CO)3(H-DAB) (M = Mn, Re; H-DAB = 1,4-diaza-1,3-butadiene). J. Phys. Chem. A. 1999. 103(29): 5766. https://doi.org/10.1021/jp984418j
50. Stuve E.M., Madix R.J. Use of the πσ Parameter for characterization of rehybridization upon adsorption on metal surfaces. J. Phys. Chem. 1985. 89(15): 3183. https://doi.org/10.1021/j100261a001
DOI: https://doi.org/10.15407/hftp06.01.042
Copyright (©) 2015 S. V. Bondarchuk, B. F. Minaev
This work is licensed under a Creative Commons Attribution 4.0 International License.