Semiconductor Nanocrystals and Graphene Oxide as Visible-Light-Sensitive Photoinitiators of Acrylamide Polymerization in Water
DOI: https://doi.org/10.15407/hftp06.01.067
Abstract
Keywords
References
1. Scranton A.B., Bowman C.N., Peiffer R.W. Photopolymerization: fundamentals and applications. (New York: ACS, 1997). https://doi.org/10.1021/bk-1997-0673
2. Belfield K.D. Photoinitiated polymerization. (ACS Symp. Ser. 847, 2003). https://doi.org/10.1021/bk-2003-0847
3. Kryukov A.I., Sherstyuk V.P., Dilung Y.Y. Photoinduced electron and applied aspects. (Kyev: Naukova dumka, 1982). [in Russian].
4. Kargin V.A. Polymer Encyclopedia. (Moscow: Sovetskaya Entziklopedia, 1972). [in Russian].
5. Liska R., Schwager F., Maier C., Cano-Vives R., Stampfl J. Water-soluble photopolymers for rapid prototyping of cellular materials. J. Appl. Polymer Sci. 2005. 97(6): 2286. https://doi.org/10.1002/app.22025
6. Davidenko N., Garcia O., Satsre R. The efficiency of titanocene as photoinitiator in the polymerization of dental formulations. J. Biomater. Sci. Polymer Ed. 2003. 14(7): 733. https://doi.org/10.1163/156856203322274978
7. Hoffmann A.J., Mills G., Yee H., Hoffmann M.R. Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. J. Phys. Chem. 1992. 96(13): 5546. https://doi.org/10.1021/j100192a067
8. Hoffmann A.J., Yee H., Mills G., Hoffmann M.R. Photoinitiated polymerization of methyl methacrylate using Q-sized zinc oxide colloids. J. Phys. Chem. 1992. 96(13): 5540. https://doi.org/10.1021/j100192a066
9. Damm C. An acrylate polymerization initiated by iron doped titanium dioxide. J. Photochem. Photobiol. A. 2006. 181(2–3): 297. https://doi.org/10.1016/j.jphotochem.2005.12.011
10. Dong C., Ni X. The photopolymerization and characterization of methyl methacrylate inititated by nanosized titanium dioxide. J. Macromol. Sci. A. 2004. 41(5): 547. https://doi.org/10.1081/MA-120030924
11. Stroyuk A.L., Granchak V.M., Kuchmiy S.Ya. Polymerization of Butylmethacrylate in Isopropanol, Photoinduced by Quantum-Sized CdS Particles. Theor. Exp. Chem. 2001. 37(3): 174. https://doi.org/10.1023/A:1011980321516
12. Stroyuk A.L., Granchak V.M., Korzhak A.V., Kuchmiy S.Ya. Photoinitiation of buthyl-methacrylate polymerization by colloidal semiconductor nanoparticles. J. Photochem. Photobiol. A. 2004. 162: 339. https://doi.org/10.1016/S1010-6030(03)00371-X
13. Stroyuk A.L., Granchak V.M., Kuchmiy S.Ya. Photopolymerization of Butyl Methacrylate Initiated by Hydrated Ferric Oxide Nanoparticles. Theor. Exp. Chem. 2001. 37(6): 350. https://doi.org/10.1023/A:1014752231171
14. Ojah R., Dolui S.K. Photopolymerization of methyl methacrylate using dye-sensitized semiconductor based photocatalyst. J. Photochem. Photobiol. A. 2005. 172(2): 121. https://doi.org/10.1016/j.jphotochem.2004.11.015
15. Stroyuk A.L., Granchak V.M., Kuchmiy S.Ya. Photopolymerization of Butyl Methacrylate in the Presence of Nanoparticles of ZnO, Sensitized to Visible Light with Xanthene Dyes. Theor. Exp. Chem. 2002. 38(5): 335. https://doi.org/10.1023/A:1021757127331
16. Ojah R., Dolui S.K. Solar radiation-induced polymerization of methyl methacrylate in the presence of semiconductor-based photo-catalyst. Sol. Energy Mater. Sol. Cells. 2006. 90(11): 1615. https://doi.org/10.1016/j.solmat.2005.08.009
17. Park S., Ruoff R.S. Chemical methods for the production of graphenes. Nature Nanotechnol. 2009. 4: 217. https://doi.org/10.1038/nnano.2009.58
18. Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010. 39: 228. https://doi.org/10.1039/B917103G
19. Compton O.C., Nguyen S.T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small. 2010. 6(6): 711. https://doi.org/10.1002/smll.200901934
20. Luo B., Liu S., Zhi L. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small. 2012. 8(5): 630. https://doi.org/10.1002/smll.201101396
21. Matsumoto Y., Koinuma M., Ida S., Hayami Sh., Taniguchi T., Hatakeyama K., Tateishi H., Watanabe Y., Amano S. Photoreaction of graphene oxide nanosheets in water. J. Phys. Chem. C. 2011. 115(39): 19280. https://doi.org/10.1021/jp206348s
22. Ding Y.H., Zhang P., Zhuo Q. Ren H.M., Yang Z.M., Jiang Y. A Green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation. Nanotechnology. 2011. 22(21): 215601. https://doi.org/10.1088/0957-4484/22/21/215601
23. Smirnov V.A., Arbuzov A.A., Shul'ga Yu.M., Baskakov S.A., Martynenko V.M., Muradyan V.E., Kresova E.I. Photoreduction of graphite oxide. High En. Chem. 2011. 45(1): 57.
24. Plotnikov V.G., Smirnov V.A., Alfimov M.A., Shul'ga Y.M. The graphite oxide photoreduction mechanism. High En. Chem. 2011. 45: 411.
25. Shulga Y.M., Martynenko V.M., Muradyan V.E. Baskakov S.A., Smirnov V.A., Gutsev G.L. Gaseous products of thermo- and photo-reduction of graphite oxide. Chem. Phys. Lett. 2010. 498(4–6): 287. https://doi.org/10.1016/j.cplett.2010.08.056
26. Stroyuk A.L., Andryushina N.S., Shcherban´ N.D., Il'in V.G., Efanov V.S., Yanchuk I.B., Kuchmii S.Ya., Pokhodenko V.D. Photochemical reduction of colloidal graphene oxide. Theor. Exp. Chem. 2012. 48(1): 2. https://doi.org/10.1007/s11237-012-9235-0
27. Jeong G.H., Kim S.H., Kim M., Choi D., Lee J.H., Kim J.H., Kim S.W. Direct synthesis of noble metal/graphene nano-composites from graphite in water: photo-synthesis. Chem. Commun. 2011. 47(44): 12236. https://doi.org/10.1039/c1cc15091j
28. Moon G., Kim H., Shin Y., Choi W. Chemical-free growth of metal nanoparticles on graphene oxide sheets under visible light irradiation. RSC Adv. 2012. 2: 2205. https://doi.org/10.1039/c2ra00875k
29. An X., Yu J.C. Graphene-based photocatalytic composites. RSC Adv. 2011. 1: 1426. https://doi.org/10.1039/c1ra00382h
30. Akhavan O. Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon. 2011. 49(1): 11. https://doi.org/10.1016/j.carbon.2010.08.030
31. Feng R., Zhou W., Guan G., Li Ch., Zhang D., Xiao Y., Zheng L., Zhu W. Surface decoration of graphene by grafting polymerization using graphene oxide as the initiator. J. Mater. Chem. 2012. 22: 3982. https://doi.org/10.1039/c2jm13667h
32. Raevskaya A.E., Stroyuk A.L., Kryukov A.I., Kuchmiy S.Y. Structural and optical characteristics of CdxZn1−x S nanoparticles stabilized in aqueous solutions of polymers. Theor. Exp. Chem. 2006. 42(3): 181. https://doi.org/10.1007/s11237-006-0035-2
33. Deb P., Biswas T., Sen D., Basumallick A., Mazumder S. Characteristics of Fe2O3 nanoparticles prepared by heat treatment of a nonaqueous powder precipitate. J. Nanoparticle Res. 2002. 4(1): 91. https://doi.org/10.1023/A:1020185515393
34. Garcia C., Zhang Y., DiSalvo F., Wiesner U. Mesoporous aluminosilicate materials with superparamagnetic γ-Fe2O3 particles embed-ded in the walls. Angew. Chem. Int. Ed. 2003. 42(13): 1526. https://doi.org/10.1002/anie.200250618
35. Casas L., Roig A., Molins E. Grenèche J.M., Asenjo J., Tejada J. Iron oxide nanoparticles hosted in silica aerogels. Appl. Phys. 2002. 74(5): 591. https://doi.org/10.1007/s003390100948
36. Woo K., Lee H.J., Ahn J.-P., Park Y.S. Sol-gel mediated synthesis of Fe2O3 nanorods. Adv. Mater. 2003. 15(20): 1761. https://doi.org/10.1002/adma.200305561
37. Fistul V.I. Introduction into the semiconductor physics. (Moscow: Vysshaya Shkola, 1984). [in Russian].
38. Hannay N.B. Semiconductors. (London: Chapman and Hall, 1962).
39. Feng W., Nansheng D. Photochemistry of hydrolytic iron(III) species and photoinduced degradation of organic compounds. A minireview. Chemosphere. 2000. 41(8): 1137. https://doi.org/10.1016/S0045-6535(00)00024-2
40. Bjorksten U., Moser J., Grätzel M. Photoelectrochemical studies on nano-crystalline hematite films. Chem. Mater. 1994. 6(6): 858. https://doi.org/10.1021/cm00042a026
41. Gori M., Grüniger H.-R., Calzaferri G. Photochemical properties of sintered iron oxide. J. Appl. Electrochem. 1980. 10(3): 345. https://doi.org/10.1007/BF00617209
42. Bamford C.H., Barb W.G., Jenkins A.D., Onyon P.F. The kinetics of vinyl polymerization by radical mechanisms. (London: Butterworths Scientific Publications, 1958).
43. George M.H., Ghosh A. Effect of oxygen on the radical polymerization of acrylamide in ethanol and water. J. Polym. Sci. Polym. Chem. Ed. 1978. 16(5): 981. https://doi.org/10.1002/pol.1978.170160510
44. Bagdasaryan H.S. Theory of radical polymerization. (Moscow: Nauka, 1966). [in Russian].
45. Goronovski I.T., Nazarenko Y.P., Nekryatch E.F. Handbook of chemistry. (Kiev: Naukova dumka, 1974). [in Russian].
46. Roy A.M., De G.C. Immobilisation of CdS, ZnS and mixed ZnS–CdS on filter paper Effect of hydrogen production from alkaline Na2S/Na2S2O3 solution. J. Photochem. Photobiol. A. 2003. 157(1): 87. https://doi.org/10.1016/S1010-6030(02)00430-6
47. Kobayashi K., Kitaguchi K., Tanaka H., Tsuiki H., Ueno A. Photogeneration of hydrogen from water over an alumina-supported ZnS-CdS catalyst. J. Chem. Soc., Faraday Trans. 1. 1987. 83: 1395. https://doi.org/10.1039/f19878301395
48. Henglein A. Catalysis of Photochemical Reactions by Colloidal Semiconductors. Pure Appl. Chem. 1984 56(9): 1215. https://doi.org/10.1351/pac198456091215
49. Kryukov A.I., Kuchmiy S.Y., Pokhodenko V.D. Energetics of electron processes in semiconductor photocatalytic systems. Theor. Exp. Chem. 2000. 36(2): 63. https://doi.org/10.1007/BF02529022
50. Zeug N., Bücheler J., Kisch H. Catalytic formation of hydrogen and carbon-carbon bonds on illuminated zinc sulfide generated from zinc dithiolenes. J. Am. Chem. Soc. 1985. 107(6): 1459. https://doi.org/10.1021/ja00292a001
51. Bavykin D.V., Savinov E.N., Parmon V.N. Studies on the kinetics of interfacial electron transfer sensitized by colloidal CdS. J. Photochem. Photobiol. A. 2000. 130(1): 57. https://doi.org/10.1016/S1010-6030(99)00196-3
52. Matsumoto H., Uchida H., Matsunaga T., Tanaka K., Sakata T., Mori H., Yoneyama H. Photoinduced reduction of viologens on size-separated CdS nano-crystals. J. Phys. Chem. 1994. 98(44): 11549. https://doi.org/10.1021/j100095a041
53. Faust B.C., Hoffmann M.R., Bahnemann D.W. Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of α-Fe2O3. J. Phys. Chem. 1989. 93(17): 6371. https://doi.org/10.1021/j100354a021
54. Baizer M.M., Lund H. Organic electrochemistry. (New York: Marcel Dekker, 1988).
55. Grätzel M. Energy resources through photochemistry and catalysis. (New York: Academic Press, 1983).
56. Fujishima A., Rao T.N., Tryk D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C. 2000. 1(1): 1. https://doi.org/10.1016/S1389-5567(00)00002-2
57. Diebold U. The surface science of titanium dioxide. Surf. Sci. Reports. 2003. 48(5–8): 53. https://doi.org/10.1016/S0167-5729(02)00100-0
58. Zhang J.Z. Interfacial charge cariers dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B. 2000. 104(31): 7239. https://doi.org/10.1021/jp000594s
59. Terenin A.N. The photonics of dyes and related compounds.(Leningrad, Nauka, 1967). [in Russian].
60. Nosaka Y., Fox M.A. Effect of light intensity on the quantum yield of photoinduced electron transfer from colloidal cadmium sulfide to methylviologen. J. Phys. Chem. 1986. 90(24): 6521. https://doi.org/10.1021/j100282a021
61. Biernat M., Rokicki G. Inhibicja tlenowa procesów fotopolimeryzacji i sposoby jej ograniczania. Polimery (Polish ed.). 2005. 50: 631.
62. Awokola M., Lenhard W., Löffler H., Flosbach C., Frese P. UV crosslinking of acryloyl functional polymers in the presence of oxygen. Prog. Org. Coat. 2002. 44(3): 211. https://doi.org/10.1016/S0300-9440(02)00015-2
63. Wang C., Jin Q., Wang Y., Yin H., Xie H., Cheng R. A green route to prepare graphite–poly(acrylic acid) and –poly(acrylamide) hybrids under γ-ray irradiation. Mater. Lett. 2012. 68: 280. https://doi.org/10.1016/j.matlet.2011.10.088
64. Zhang B., Zhang Y., Peng C., Yu M., Li L., Deng B., Hu P., Fan Ch., Li J., Huang Q. Preparation of polymer decorated graphene oxide by γ-ray induced graft polymerization. Nanoscale. 2012. 4: 1742. https://doi.org/10.1039/c2nr11724j
DOI: https://doi.org/10.15407/hftp06.01.067
Copyright (©) 2015 O. L. Stroyuk, S. Ya. Kuchmiy, N. S. Andryushina
This work is licensed under a Creative Commons Attribution 4.0 International License.