Chemistry, Physics and Technology of Surface, 2015, 6 (1), 67-84.

Semiconductor Nanocrystals and Graphene Oxide as Visible-Light-Sensitive Photoinitiators of Acrylamide Polymerization in Water



DOI: https://doi.org/10.15407/hftp06.01.067

O. L. Stroyuk, S. Ya. Kuchmiy, N. S. Andryushina

Abstract


Photopolymerization of acrylamide in aqueous solutions induced by visible light (λ>400 nm) absorbed by colloidal particles of CdxZn1–xS, Fe2O3 and graphene oxide is reported. Depending on the photoinitiator nature, primary radicals are generated by monomer reduction with conduction band electrons (CdxZn1–xS), monomer oxidation by the valence band holes (Fe2O3) or by interaction between monomer and free radicals photoeliminated from graphene oxide. The photopolymerization rate increases proportionally to the conduction band potential of CdxZn1-xS nanoparticles that depends on their composition. The Fe2O3-initiated acrylamide photopolymerization proceeds with comparable effectiveness in both deaerated and air-exposed aqueous solutions, the feature differing drastically from typical organic photoinitiators. On the basis of kinetic parameters the photopolymerization process was found to be of the chain free radical character with a principal chain termination route being macro-radicals recombination. The kinetic data also indicate a possibility of participation of the CdxZn1–xS nanoparticles and graphene oxide in the chain termination.

Keywords


cadmium sulfide; zinc sulfide; iron oxide; graphene oxide; nanocrystals; photocatalysis; photopolymerization

Full Text:

PDF

References


1. Scranton A.B., Bowman C.N., Peiffer R.W. Photopolymerization: fundamentals and applications. (New York: ACS, 1997).   https://doi.org/10.1021/bk-1997-0673

2. Belfield K.D. Photoinitiated polymerization. (ACS Symp. Ser. 847, 2003).  https://doi.org/10.1021/bk-2003-0847

3. Kryukov A.I., Sherstyuk V.P., Dilung Y.Y. Photoinduced electron and applied aspects. (Kyev: Naukova dumka, 1982). [in Russian].

4. Kargin V.A. Polymer Encyclopedia. (Moscow: Sovetskaya Entziklopedia, 1972). [in Russian].

5. Liska R., Schwager F., Maier C., Cano-Vives R., Stampfl J. Water-soluble photopolymers for rapid prototyping of cellular materials. J. Appl. Polymer Sci. 2005. 97(6): 2286.    https://doi.org/10.1002/app.22025

6. Davidenko N., Garcia O., Satsre R. The efficiency of titanocene as photoinitiator in the polymerization of dental formulations. J. Biomater. Sci. Polymer Ed. 2003. 14(7): 733.   https://doi.org/10.1163/156856203322274978

7. Hoffmann A.J., Mills G., Yee H., Hoffmann M.R. Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. J. Phys. Chem. 1992. 96(13): 5546.   https://doi.org/10.1021/j100192a067

8. Hoffmann A.J., Yee H., Mills G., Hoffmann M.R. Photoinitiated polymerization of methyl methacrylate using Q-sized zinc oxide colloids. J. Phys. Chem. 1992. 96(13): 5540.   https://doi.org/10.1021/j100192a066

9. Damm C. An acrylate polymerization initiated by iron doped titanium dioxide. J. Photochem. Photobiol. A. 2006. 181(2–3): 297.   https://doi.org/10.1016/j.jphotochem.2005.12.011

10. Dong C., Ni X. The photopolymerization and characterization of methyl methacrylate inititated by nanosized titanium dioxide. J. Macromol. Sci. A. 2004. 41(5): 547.   https://doi.org/10.1081/MA-120030924

11. Stroyuk A.L., Granchak V.M., Kuchmiy S.Ya. Polymerization of Butylmethacrylate in Isopropanol, Photoinduced by Quantum-Sized CdS Particles. Theor. Exp. Chem. 2001. 37(3): 174.   https://doi.org/10.1023/A:1011980321516

12. Stroyuk A.L., Granchak V.M., Korzhak A.V., Kuchmiy S.Ya. Photoinitiation of buthyl-methacrylate polymerization by colloidal semiconductor nanoparticles. J. Photochem. Photobiol. A. 2004. 162: 339.   https://doi.org/10.1016/S1010-6030(03)00371-X

13. Stroyuk A.L., Granchak V.M., Kuchmiy S.Ya. Photopolymerization of Butyl Methacrylate Initiated by Hydrated Ferric Oxide Nanoparticles. Theor. Exp. Chem. 2001. 37(6): 350.   https://doi.org/10.1023/A:1014752231171

14. Ojah R., Dolui S.K. Photopolymerization of methyl methacrylate using dye-sensitized semiconductor based photocatalyst. J. Photochem. Photobiol. A. 2005. 172(2): 121.   https://doi.org/10.1016/j.jphotochem.2004.11.015

15. Stroyuk A.L., Granchak V.M., Kuchmiy S.Ya. Photopolymerization of Butyl Methacrylate in the Presence of Nanoparticles of ZnO, Sensitized to Visible Light with Xanthene Dyes. Theor. Exp. Chem. 2002. 38(5): 335.   https://doi.org/10.1023/A:1021757127331

16. Ojah R., Dolui S.K. Solar radiation-induced polymerization of methyl methacrylate in the presence of semiconductor-based photo-catalyst. Sol. Energy Mater. Sol. Cells. 2006. 90(11): 1615.   https://doi.org/10.1016/j.solmat.2005.08.009

17. Park S., Ruoff R.S. Chemical methods for the production of graphenes. Nature Nanotechnol. 2009. 4: 217.  https://doi.org/10.1038/nnano.2009.58

18. Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010. 39: 228.  https://doi.org/10.1039/B917103G

19. Compton O.C., Nguyen S.T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small. 2010. 6(6): 711.   https://doi.org/10.1002/smll.200901934

20. Luo B., Liu S., Zhi L. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small. 2012. 8(5): 630. https://doi.org/10.1002/smll.201101396

21. Matsumoto Y., Koinuma M., Ida S., Hayami Sh., Taniguchi T., Hatakeyama K., Tateishi H., Watanabe Y., Amano S. Photoreaction of graphene oxide nanosheets in water. J. Phys. Chem. C. 2011. 115(39): 19280.   https://doi.org/10.1021/jp206348s

22. Ding Y.H., Zhang P., Zhuo Q. Ren H.M., Yang Z.M., Jiang Y. A Green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation. Nanotechnology. 2011. 22(21): 215601.    https://doi.org/10.1088/0957-4484/22/21/215601

23. Smirnov V.A., Arbuzov A.A., Shul'ga Yu.M., Baskakov S.A., Martynenko V.M., Muradyan V.E., Kresova E.I. Photoreduction of graphite oxide. High En. Chem. 2011. 45(1): 57.

24. Plotnikov V.G., Smirnov V.A., Alfimov M.A., Shul'ga Y.M. The graphite oxide photoreduction mechanism. High En. Chem. 2011. 45: 411.

25. Shulga Y.M., Martynenko V.M., Muradyan V.E. Baskakov S.A., Smirnov V.A., Gutsev G.L. Gaseous products of thermo- and photo-reduction of graphite oxide. Chem. Phys. Lett. 2010. 498(4–6): 287.   https://doi.org/10.1016/j.cplett.2010.08.056

26. Stroyuk A.L., Andryushina N.S., Shcherban´ N.D., Il'in V.G., Efanov V.S., Yanchuk I.B., Kuchmii S.Ya., Pokhodenko V.D. Photochemical reduction of colloidal graphene oxide. Theor. Exp. Chem. 2012. 48(1): 2.   https://doi.org/10.1007/s11237-012-9235-0

27. Jeong G.H., Kim S.H., Kim M., Choi D., Lee J.H., Kim J.H., Kim S.W. Direct synthesis of noble metal/graphene nano-composites from graphite in water: photo-synthesis. Chem. Commun. 2011. 47(44): 12236.   https://doi.org/10.1039/c1cc15091j

28. Moon G., Kim H., Shin Y., Choi W. Chemical-free growth of metal nanoparticles on graphene oxide sheets under visible light irradiation. RSC Adv. 2012. 2: 2205.   https://doi.org/10.1039/c2ra00875k

29. An X., Yu J.C. Graphene-based photocatalytic composites. RSC Adv. 2011. 1: 1426.  https://doi.org/10.1039/c1ra00382h

30. Akhavan O. Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon. 2011. 49(1): 11.  https://doi.org/10.1016/j.carbon.2010.08.030

31. Feng R., Zhou W., Guan G., Li Ch., Zhang D., Xiao Y., Zheng L., Zhu W. Surface decoration of graphene by grafting polymerization using graphene oxide as the initiator. J. Mater. Chem. 2012. 22: 3982.   https://doi.org/10.1039/c2jm13667h

32. Raevskaya A.E., Stroyuk A.L., Kryukov A.I., Kuchmiy S.Y. Structural and optical characteristics of CdxZn1−x S nanoparticles stabilized in aqueous solutions of polymers. Theor. Exp. Chem. 2006. 42(3): 181.   https://doi.org/10.1007/s11237-006-0035-2

33. Deb P., Biswas T., Sen D., Basumallick A., Mazumder S. Characteristics of Fe2O3 nanoparticles prepared by heat treatment of a nonaqueous powder precipitate. J. Nanoparticle Res. 2002. 4(1): 91.   https://doi.org/10.1023/A:1020185515393

34. Garcia C., Zhang Y., DiSalvo F., Wiesner U. Mesoporous aluminosilicate materials with superparamagnetic γ-Fe2O3 particles embed-ded in the walls. Angew. Chem. Int. Ed. 2003. 42(13): 1526.   https://doi.org/10.1002/anie.200250618

35. Casas L., Roig A., Molins E. Grenèche J.M., Asenjo J., Tejada J. Iron oxide nanoparticles hosted in silica aerogels. Appl. Phys. 2002. 74(5): 591.   https://doi.org/10.1007/s003390100948

36. Woo K., Lee H.J., Ahn J.-P., Park Y.S. Sol-gel mediated synthesis of Fe2O3 nanorods. Adv. Mater. 2003. 15(20): 1761.  https://doi.org/10.1002/adma.200305561   

37. Fistul V.I. Introduction into the semiconductor physics. (Moscow: Vysshaya Shkola, 1984). [in Russian].

38. Hannay N.B. Semiconductors. (London: Chapman and Hall, 1962).

39. Feng W., Nansheng D. Photochemistry of hydrolytic iron(III) species and photoinduced degradation of organic compounds. A minireview. Chemosphere. 2000. 41(8): 1137.   https://doi.org/10.1016/S0045-6535(00)00024-2

40. Bjorksten U., Moser J., Grätzel M. Photoelectrochemical studies on nano-crystalline hematite films. Chem. Mater. 1994. 6(6): 858.  https://doi.org/10.1021/cm00042a026

41. Gori M., Grüniger H.-R., Calzaferri G. Photochemical properties of sintered iron oxide. J. Appl. Electrochem. 1980. 10(3): 345.  https://doi.org/10.1007/BF00617209

42. Bamford C.H., Barb W.G., Jenkins A.D., Onyon P.F. The kinetics of vinyl polymerization by radical mechanisms. (London: Butterworths Scientific Publications, 1958).

43. George M.H., Ghosh A. Effect of oxygen on the radical polymerization of acrylamide in ethanol and water. J. Polym. Sci. Polym. Chem. Ed. 1978. 16(5): 981.   https://doi.org/10.1002/pol.1978.170160510

44. Bagdasaryan H.S. Theory of radical polymerization. (Moscow: Nauka, 1966). [in Russian].

45. Goronovski I.T., Nazarenko Y.P., Nekryatch E.F. Handbook of chemistry. (Kiev: Naukova dumka, 1974). [in Russian].

46. Roy A.M., De G.C. Immobilisation of CdS, ZnS and mixed ZnS–CdS on filter paper Effect of hydrogen production from alkaline Na2S/Na2S2O3 solution. J. Photochem. Photobiol. A. 2003. 157(1): 87.   https://doi.org/10.1016/S1010-6030(02)00430-6

47. Kobayashi K., Kitaguchi K., Tanaka H., Tsuiki H., Ueno A. Photogeneration of hydrogen from water over an alumina-supported ZnS-CdS catalyst. J. Chem. Soc., Faraday Trans. 1. 1987. 83: 1395.   https://doi.org/10.1039/f19878301395

48. Henglein A. Catalysis of Photochemical Reactions by Colloidal Semiconductors. Pure Appl. Chem. 1984 56(9): 1215.  https://doi.org/10.1351/pac198456091215

49. Kryukov A.I., Kuchmiy S.Y., Pokhodenko V.D. Energetics of electron processes in semiconductor photocatalytic systems. Theor. Exp. Chem. 2000. 36(2): 63.   https://doi.org/10.1007/BF02529022

50. Zeug N., Bücheler J., Kisch H. Catalytic formation of hydrogen and carbon-carbon bonds on illuminated zinc sulfide generated from zinc dithiolenes. J. Am. Chem. Soc. 1985. 107(6): 1459.   https://doi.org/10.1021/ja00292a001

51. Bavykin D.V., Savinov E.N., Parmon V.N. Studies on the kinetics of interfacial electron transfer sensitized by colloidal CdS. J. Photochem. Photobiol. A. 2000. 130(1): 57.   https://doi.org/10.1016/S1010-6030(99)00196-3

52. Matsumoto H., Uchida H., Matsunaga T., Tanaka K., Sakata T., Mori H., Yoneyama H. Photoinduced reduction of viologens on size-separated CdS nano-crystals. J. Phys. Chem. 1994. 98(44): 11549.   https://doi.org/10.1021/j100095a041

53. Faust B.C., Hoffmann M.R., Bahnemann D.W. Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of α-Fe2O3. J. Phys. Chem. 1989. 93(17): 6371.   https://doi.org/10.1021/j100354a021

54. Baizer M.M., Lund H. Organic electrochemistry. (New York: Marcel Dekker, 1988).

55. Grätzel M. Energy resources through photochemistry and catalysis. (New York: Academic Press, 1983).

56. Fujishima A., Rao T.N., Tryk D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C. 2000. 1(1): 1.  https://doi.org/10.1016/S1389-5567(00)00002-2

57. Diebold U. The surface science of titanium dioxide. Surf. Sci. Reports. 2003. 48(5–8): 53.  https://doi.org/10.1016/S0167-5729(02)00100-0

58. Zhang J.Z. Interfacial charge cariers dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B. 2000. 104(31): 7239.  https://doi.org/10.1021/jp000594s

59. Terenin A.N. The photonics of dyes and related compounds.(Leningrad, Nauka, 1967). [in Russian].

60. Nosaka Y., Fox M.A. Effect of light intensity on the quantum yield of photoinduced electron transfer from colloidal cadmium sulfide to methylviologen. J. Phys. Chem. 1986. 90(24): 6521.   https://doi.org/10.1021/j100282a021

61. Biernat M., Rokicki G. Inhibicja tlenowa procesów fotopolimeryzacji i sposoby jej ograniczania. Polimery (Polish ed.). 2005. 50: 631.

62. Awokola M., Lenhard W., Löffler H., Flosbach C., Frese P. UV crosslinking of acryloyl functional polymers in the presence of oxygen. Prog. Org. Coat. 2002. 44(3): 211.   https://doi.org/10.1016/S0300-9440(02)00015-2

63. Wang C., Jin Q., Wang Y., Yin H., Xie H., Cheng R. A green route to prepare graphite–poly(acrylic acid) and –poly(acrylamide) hybrids under γ-ray irradiation. Mater. Lett. 2012. 68: 280.   https://doi.org/10.1016/j.matlet.2011.10.088

64. Zhang B., Zhang Y., Peng C., Yu M., Li L., Deng B., Hu P., Fan Ch., Li J., Huang Q. Preparation of polymer decorated graphene oxide by γ-ray induced graft polymerization. Nanoscale. 2012. 4: 1742.   https://doi.org/10.1039/c2nr11724j




DOI: https://doi.org/10.15407/hftp06.01.067

Copyright (©) 2015 O. L. Stroyuk, S. Ya. Kuchmiy, N. S. Andryushina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.