Chemistry, Physics and Technology of Surface, 2015, 6 (1), 85-96.

Characterization and Photoactivity of Titanium (IV) Oxide Obtained from Different Precursors



DOI: https://doi.org/10.15407/hftp06.01.085

T. A. Dontsova, I. N. Ivanenko, I. M. Astrelin

Abstract


The advantages of using heterogeneous photocatalysis for removing organic substances from water and process mechanism are examined. Series of titanium (IV) oxide catalysts from the various precursors and with/without modifiers are synthesized. The use of different precursors and modifiers has been shown to provide a wide variety of physical and chemical characteristics of the catalysts. The obtained samples exhibited high activity to the dyes of both anionic and cationic types.

Keywords


titanium (IV) oxide; sol-gel method; anatase; rutile, brookite, heterogeneous photocatalysis, photoactivity

Full Text:

PDF (Русский)

References


1. Nazeeruddin M.K., Gratzel M.J. J. Photochem. Photobiology A: Chem. 2001. 145: 252.  https://doi.org/10.1016/S1010-6030(01)00572-X

2. Vinu R., Madras G. Environmental remediation by photocatalysis. J. Indian Inst. Sci. 2010. 90(2): 189.

3. Ollis D.F., Al-Ekabi H. Photocatalytic Purification and Treatment of Water and Air. (London: Elsevier, 1993).

4. Herrmann J.-M. Heterogeneous photo-catalysis: state of the art and present applications. Top. Catal. 2005. 34(1–4): 49.  https://doi.org/10.1007/s11244-005-3788-2

5. Soboleva N.M., Nosovich A.A., Goncharuk V.V. The heterogenic photocatalysis in water treatment processes. J. Water Chem. Technol. 2007. 29(2): 72.   https://doi.org/10.3103/S1063455X07020038

6. Shelimov B.N., Kazanskiy V.B. Photochemical processes on the surface of deposited oxide systems. (Novosibirsk: Nauka, 1991). [in Russian].

7. Nozik A.J. Photoelectrolysis of water using semiconducting TiO2 crystals. Nature. 2002. 36(11): 2703.

8. Prasad G., Chandra Babu K.S., Srivastava O. Photocatalysys on TiO2. Int. J. Hydrogen Energy. 2007. 148: 172.

9. Fedotova M.P., Voronova G.A., Emel'yanova E.Yu., Radishevskaya N.I., Vodyankina O.V. Nanodisperse Photocatalysts Based on Titanium Dioxide. Russ. J. Phys. Chem. A. 2009. 83(8): 1371.   https://doi.org/10.1134/S0036024409080202

10. Barilyak A.Y., Besaga K.S., Bobitckiy Y.V., Vakhula Y.I. Nanophotocatalysts on the Basis of TiO2: Synthesis and Properties. Phys. Chem. Solid State. 2009. 10(3): 515. [in Russian].

11. Li J.-G., Ishigaki T., Sun X. Anatase, brookite, and rutile nanocrystals via redox reactions conditions: phase-selective synthesis and physicochemical properties. J. Phys. Chem. C. 2007. 111(13): 72.   https://doi.org/10.1021/jp0673258

12. Wyckoff R.W. Crystal Structures. (New York: John Wiley & Sons, 1963).

13. Thompson T.L., Yates J.T. Surface science studies of the photoactivation of TiO2-New photochemical processes. Chem. Rev. 2006. 106(10): 4428.   https://doi.org/10.1021/cr050172k

14. Park J.-Y., Lee C., Jung K.W., Jung D. Structure Related Photocatalytic Properties of TiO2. Bull. Korean Chem. Soc. 2009. 30(2): 402.  https://doi.org/10.5012/bkcs.2009.30.2.402

15. Dontsova T.A., Bredykhin I.V. Mechanism of TiO2 photocatalysis on the surface. Research Bulletin of the NTUU "Kyiv Politechnic Institute". 2013. 89(3): 114. [in Ukrainian].

16. Tan S.S., Zou L., Hu E. Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catal. Today. 2006. 115(1–4): 269.   https://doi.org/10.1016/j.cattod.2006.02.057

17. Ahmed S., Rasul M.G., Martens W.N. Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water, Air, & Soil Pollution. 2011. 215(4): 3.   https://doi.org/10.1007/s11270-010-0456-3

18. Diebold U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003. 48(5–8): 53.  https://doi.org/10.1016/S0167-5729(02)00100-0

19. Xiaobo Ch., Mao S. Titanium Dioxide: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2006. 111(7): 2656.

20. Bakardjieva S. Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl. Catal. B. 2005. 58(3–4): 193.   https://doi.org/10.1016/j.apcatb.2004.06.019

21. Ahmad A., Awan G.H., Aziz S. Synthesis and applications of TiO2 nanoparticles. Pakistan Engineering. 2009. 283: 3107.

22. Chen X., Mao S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007. 107(7): 2891.  https://doi.org/10.1021/cr0500535

23. Hafizah N., Sopyan I. Nanosized TiO2 photocatalyst powder via sol-gel method: effect of hydrolysis degree on powder properties. Int. J. Photoenergy. 2009. 78: 40.

24. Pookmanee P., Phanichphant S. Titanium dioxide powder prepared by a sol-gel method. Journal of Ceramic Processing Research. 2009. 10(2): 167.

25. Inaba R., Fukahori T., Hamamoto M., Ohno T. Synthesis of nanosized TiO2 particles in reverse micelle systems and their photocatalytic activity for degradation of toluene in gas phase. J. Mol. Catal. A: Chem. 2006. 260(1–2): 247.   https://doi.org/10.1016/j.molcata.2006.06.053

26. Patent UA 88862. Trots V.V., Dontsova T.A., Ivanenko I.M., Astrelin I.M. Process for low temperature synthesis of rod-like nanoparticles of titanium(IV) oxide. 2013.




DOI: https://doi.org/10.15407/hftp06.01.085

Copyright (©) 2015 T. A. Dontsova, I. N. Ivanenko, I. M. Astrelin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.