Chemistry, Physics and Technology of Surface, 2015, 6 (1), 147-164.

Coordination Compounds of Metals of Life and Bioligands as Model Additives to Ecofriendly Lubricating Compositions



DOI: https://doi.org/10.15407/hftp06.01.147

L. I. Koval, V. I. Dzyuba, O. L. Ilnitska, V. I. Pekhnyo, O. A. Mishchuk

Abstract


The actuality of the creation of new ecofriendly biobased lubricants and hence a new generation of multifunctional additives to the them based on metals of life and bioligands has been substantiated. Methods for the synthesis of model complexes-additives of Mg(II), Cu(II) and Mo(IV) with b-dicarbonyl ligands and hydroxamic acids, the peculiarities of their molecular structure, and tribological properties in ethyl laurate solution (base oil of vegetable origin) are considered. It has been found that copper- and molybdenum-containing antiwear additives affect the microstructure and composition of the surfaces and subsurface layers of the friction zone due to the penetration of their elements as impurities into depth of surface layer for the samples of friction pairs.

Keywords


friction surface; model additives; tribological properties; anti-wear nanolayers; tribodiffusion; ecofriendly lubricants; base oils of vegetable origin; molybdenum; copper; magnesium; bioligands

Full Text:

PDF (Українська)

References


1. Kuzyshyn O.V., Sirenko G.A., Sirenko O.H., Dzhurenko N.I., Palamarchuk O.P., Sav'yak A.L. Lubricants based on vegetable oils for the contact surfaces of solids during friction and wear (review). Physics and Chemistry of Solid State. 2009. 10(4): 905.

2. Dzyuba V.I., Ilʹnytsʹka O.L., Myronyuk H.I., Vasylʹkevych I.M. The prospects for Ukraine in lubricants on biological basis. Ecotechnologies and resource saving. 2002. 2: 24. [in Ukrainian].

3. Knothe G., Van Gerpen J.H., Krahl J. The Biodiesel Handbook. (Champaign, Illinois: AOCS Press, 2005).  https://doi.org/10.1201/9781439822357

4. Vysotskiy S.P., Nedopekin F.V., Stolyarova N.A. The use of alternative energy sources and its impact on the environment. Bulletin of Donetsk National University. Series A: Natural Science. 2011. 2: 163.

5. Willing A. Lubricants based on renewable resources – an environmentally compatible alternative to mineral oil products. Chemosphere. 2001. 43(1): 89.   https://doi.org/10.1016/S0045-6535(00)00328-3

6. Lawler A., Kaiser J., Williams N. Climate change treaty. Panels lead the way on the road to Kyoto Conference. Science. 1997. 278(23): 216.   https://doi.org/10.1126/science.278.5336.216b

7. Uosukainen E., Linko Y.-Y., Lamsa M. Tervakangas T., Linko P. Transesterification of trimethylolpropane and rapeseed oil methyl ester to environmentally acceptable lubricants. J. Amer. Oil. Chem. Soc. 1998. 75(11): 1557.   https://doi.org/10.1007/s11746-998-0094-8

8. Lyutiy O.S., Boychenko S.V., Aksenov O.F. The current state of biodiesel in the world. Proceedings of National Aviation University. 2009. 38(1): 142. [in Russian].

9. Shevtsov A.I., Zemlyanyy N.H., Doroshkevych A.Z., Ryauzova T.V., Verbynsʹkyy V.V., Barannik V.O. The prospects Ukraine energy in the context of global trends. (Dnipropetrovsk: RB NISS, 2008). [in Ukrainian].

10. Malyarenko V.A., Yakovlev A.Y. Biodiesel – alternative motor fuels diversification. Energy saving. Power engineering. Energy audit. 2006. 3: 64. [in Russian].

11. Yatsenko L.D., Ivanyuta S.P. Justification indicators of ecological safety of Ukraine. Strategic priorities. 2013. 1(26): 134. [in Ukrainian].

12. Kovtun H.O., Sukhovyeyev V.V. Antiwear properties of metal complexes: relationship structure with efficiency. Ukrainian chemical journal. 2000. 66(9): 22. [in Ukrainian].

13. Patent 2364284 USA. Freuler H.C. Modified lubricating oil. 1944.

14. Nicholls M.A., Do T., Norton P.R., Kasrai M., Bancroft G.M. Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates. Tribology International. 2005. 38(1): 15.   https://doi.org/10.1016/j.triboint.2004.05.009

15. Morina A., Liskiewicz T., Neville A. Designing new lubricant additives using biomimetic. WIT Transactions on Ecology and the Environment. 2006. 87: 157.   https://doi.org/10.2495/dn060151

16. Engineering and Design Lubricants and Hydraulic Fluids. (Washington: U.S. Army Corps of Engineers (USACE), 1999).

17. Lovell M., Higgs C.F., Deshmukh P., Mobley A. Increasing formability in sheet metal stamping operations using environmentally friendly lubricants. J. Mater. Process. Technol. 2006. 177(1–3): 87.   https://doi.org/10.1016/j.jmatprotec.2006.04.045

18. Williams D.R. The Metals of Life. (London: Van Nostrand, 1971).

19. Lakhtin Yu.M. Metallurgy and heat treatment of metals. (Moscow: Metallurgy, 1979). [in Russian].

20. Mishchuk O.O., Yudina V.V., Tsapliy M.P. Problems of tribochemical activity of micro-dispersive hydrosilicate at contact zone of a steel friction pair. Problems of Friction and Wear. 2013. 1(60): 4. [in Ukrainian].

21. Patent 6 358 896 B1 USA. Gutierrez A., Hartley R.J. Friction Modifiers for Engine Oil Composition. 2002.

22. Patent UA 26985. Koval L.I., Dzyuba V.I., Ilnytska O.L., Pekhnyo V.I. Method for efficient reesterification of ethylacetate with higher alcohols without catalysts. 2007.

23. Koval L.I., Dzyuba V.I., Ilnitska O.L., Pekhnyo V.I. Efficient transesterification of ethyl acetoacetate with higher alcohols without catalysts. Tetrahedron Lett. 2008. 49(10): 1645.   https://doi.org/10.1016/j.tetlet.2008.01.018

24. Patent SSSR 1509355. Dzyuba V.I., Chernova T.V., Pavlov I.V., Bashkevich I.N., Maslov V.T., Brezhenko S.A. Method of obtaining protyvoyznosnoy polyfunktsyonalnoy additives for lubricants. 1989.

25. Patent RF 2034909. Alekseyev N.M., Kuz'min N.N., Shuvalova Ye.A., Pavlov I.V., Lutsekovich L.T., Murav'yeva T.I., Sarkisyants N.R., Ternovaya T.V., Mironyuk G.I. Plastichnaya smazka. 1995.

26. Green E.S.R., Evans H., Rice-Evans P., Davies M.J., Salah N., Rice-Evans C. The efficacy of monohydroxamates as free radical scavenging agents compared with di- and trihydroxamates. Biochem. Pharmacol. – 1993. 45(2): 357.   https://doi.org/10.1016/0006-2952(93)90071-4

27. Zaugg H.E., Dunningon D.A., Michaels R.J., Swett L.R., Wang T.S., Sommers A.H., Denet R.W. Specific solvent effects in the alkylation of enolate anions. III. preparative alkylations in dimethylformamide. J. Org. Chem. 1961. 26(3): 644.   https://doi.org/10.1021/jo01062a002

28. Baker S.R., Michael L.F., Cadman L., Crombie L., Edwards D.A.V., Mistry J. Magnesium methoxide complexation in the control of chemical reactions. J. Chem. Soc., Perkin Trans. 1996. 1: 2705.   https://doi.org/10.1039/p19960002705

29. Koval L.I., Dzyuba V.I., Bon V.V., Ilnitska O.L., Pekhnyo V.I. Synthesis and structure of anhydrous complexes of magnesium(II) with b-ketoesters of higher alcohols. Polyhedron. 2009. 28: 2698.   https://doi.org/10.1016/j.poly.2009.05.034

30. Hu J., Yang Sh., Guo Li. Evaluation on antiwear and load-carrying properties of organic copper compounds containing sulfur and phosphorus in lubricants. Petroleum and Coal. 2012. 54(3): 301.

31. Patent USA 5 132 031. Born M., Hipeaux J.-Cl., Maran V., Rossi A., Thebault M. Copper dihydrocarbyl dithiophosphyl dithiophos-phates, their preparation and their use as additives for lubricants. 1992.

32. Berg E.W., Truemper J.T. A study of the volatile characteristics of various metal β-diketone chelates. J. Phys. Chem. 1960. 64(4): 487.  https://doi.org/10.1021/j100833a029

33. Koval L.I., Ilnitska O.L., Dzyuba V.I. Electronic and renthenofotoelektronni spectra and structure -dicarbonyl complexes of copper(II) with massive linear and branched alkyl substituents. Ukrainian chemical journal. 2007. 73(1): 3. [in Ukrainian].

34. Patnaik S., Guru Row T.N., Raghunathan L., Robinson W.T. Low-temperature structure of two copper-based precursors for MOCVD: aquabis(tert-butyl acetoacetato)copper(II) and Bis(dipivaloyl-methanido)copper(II). Acta Cryst. 1996. C 52(4): 891.

35. Topich J. Ligand control of the redox properties of dioxomolybdenum(VI) coordi-nation complexes. Inorg. Chem. 1981. 20(11): 3704.  https://doi.org/10.1021/ic50225a024

36. Dzyuba V.I., Koval L.I., Bon V.V., Pekhnyo V.I. Synthesis and structure of lipophilic dioxo-molybdenum(VI) bis(hydroxamato) complexes. Polyhedron. 2010. 29(15): 2900.   https://doi.org/10.1016/j.poly.2010.07.014

37. Henecka H. Esterbildung aus Carbonsäuren und Alkohol. Veresterung durch azeotrope Destillation (pp. 522–523). Methoden der Organischen Chemie (Houben-Weyl) V. 8. (Stuttgart: Georg Thieme Verlag, 1952).

38. Klamann D., Rost R.R. Lubricants and related products : synthesis, properties, applications, international standards. (Weinheim by Verlag Chemie, 1984).

39. Johnson K.L. Contact Mechanics. (Cambridge University Press, 1985).  https://doi.org/10.1017/CBO9781139171731

40. Mishchuk A.A., Telemko O.V., Gorpinko Yu.G. Thin film properties of surface micro amounts of methane generated by friction. Physics and Chemistry of Solid State. 2002. 3(3): 491. [in Ukrainian].

41. Kostetsky B.I. The structural-energetic concept in the theory of friction and wear (synergism and self-organization). Wear. 1992. 159(1): 1.  https://doi.org/10.1016/0043-1648(92)90280-L

42. Martin Zh.M., Mansot Zh.L., Barbezye I. Education depreciated layers with metal wear in the presence of oils with additive. Trenye, yznos y smazochnye materyaly: Tr. Mezhd. nauch. konf. 1985. 2: 23. [in Russian].

43. Vipper A.B, Karaulov A.K., Mischuk O.A. New data on the mechanism of antiwear action of zinc dithiophosphates in lubricating oils. Lubrication Science. 1994. 7(1): 93.   https://doi.org/10.1002/ls.3010070108

44. Scherge M., Shakhvorostov D., Pöhlmann K. Fundamental wear mechanism of metals. Wear. 2003. 255(1–6): 395.  https://doi.org/10.1016/S0043-1648(03)00273-4

45. Shakhvorostov D., Pohlmann K., Scherge M. Structure and mechanical properties of tribologically induced nanolayers. Wear. 2006. 260(4–5): 433.  https://doi.org/10.1016/j.wear.2005.02.086

46. Jiang S., Wei Yu., Cheng X., Chen B. Tribological performance and tribochemical mechanism of lanthanum dialkyldithiophosphate. Journal of Rare Earths. 2005. 23(1): 20.

47. Wahl K.J., Seitzman L.E., Bolster R.N., Singer I.L., Peterson M.B. Ion-beam deposited Cu-Mo coatings as high temperature solid lubricants. Surf. Coat. Technol. 1997. 89(3): 245.   https://doi.org/10.1016/S0257-8972(96)02900-3

48. Mashkov Yu.K., Poleshchenko K.N., Povoroznyuk S.N., Orlov P.V. Friction materials and modifying tribosystems. (Moscow: Nauka, 2000). [in Russian].

49. Dzyuba V.I., Koval L.I., Ilnitska O.L., Pekhnyo V.I. Biomimetic approach to the design of antiwear additives to eco-friendly lubricating compositions. Physics and Chemistry of Solid State. 2011. 12(2): 517.

50. Girichev G.V., Giricheva N.I., Belova N.V., Kuz'mina N.P. Structure of the Gas-Phase sp- and d-Element Bis(dipivaloylmethanato) Complexes. Russian Journal of Coordination Chemistry. 1999. 25(12): 833.

51. Borysenko M.V., Kulyk K.S., Dyachenko A.G., Cherniavska T.V., Borysenko L.I. Thermal transformations of copper acetylacetonate adsorbed on silica surface. Him. Fiz. Tehnol. Poverhni. 2013. 4(3): 320. [in Russian].

52. Koval L.I., Mishchuk O.A., Dzyuba V.I., Ilnitska O.L., Pekhnyo V.I. Action of lipophilic copper bis(hydroxamato) complexes on tribochemical transformations of steel friction surfaces at high temperature. In: "Applied Physico–Inorganic Chemistry" Int. Conf. (Sept. 23, 2013, Sevastopol, Ukraine). P. 92.

53. Dzyuba V.I., Koval L.I., Bon V.V. Structure and tribological properties hydroxamate complexes of molybdenum. In: XXIV International Chugaev conference on coordination Chemistry. (June. 15, 2009, St.-Petersburg, RF). P. 261.

54. Kajdas C.K. Importance of the triboemission process for tribochemical reaction. Tribology International. 2005. 38(3): 337.  https://doi.org/10.1016/j.triboint.2004.08.017

55. Mischuk O.O., Dzyuba V.I., Koval L.I., Telemko O.V., Pekhnyo V.I. Mechanochemical transformation of steel friction surfaces under the influence of sulfur-free surfactant complexes of molybdenum. Problems of Friction and Wear. 2012. 57: 256. [in Ukrainian].

56. Pekhnyo V.I., Koval L.I., Dzyuba V.I., Ilnitska O.L. Tribodiffusion effect of the central atom of the complex-antiwear additives resulting in the formation of hybrid nanostructures. Applied Physico–Inorganic Chemistry. Int. Conf. (October 2, 2011, Sevastopol, Ukraine): 60.




DOI: https://doi.org/10.15407/hftp06.01.147

Copyright (©) 2015 L. I. Koval, V. I. Dzyuba, O. L. Ilnitska, V. I. Pekhnyo, O. A. Mishchuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.