Structurally-functional design of nanocomposite catalysts for producing and environmental catalysis
DOI: https://doi.org/10.15407/hftp06.03.273
Abstract
Keywords
References
1. Centi G., Arena G., Perathoner S. Nanostructured catalysts for NOx storage–reduction and N2O decomposition. J. Catal . 2003. 216(1–2): 443. https://doi.org/10.1016/S0021-9517(02)00072-6.
2. Krylov O.V. Catalysis on the threshold of XXI century. Some forecasts. Ross. khim. zhur. 2000. 44(4): 53. [in Russian].
3. Williams J. Monolith structures, materials, properties and uses. Catal. Today. 2001. 69(1–4): 3. https://doi.org/10.1016/S0920-5861(01)00348-0.
4. Berndt M., Landri P. An overview about Engelhard approach to non-standard environmental catalysis. Catal. Today. 2002. 75 (1–4): 17. https://doi.org/10.1016/S0920-5861(02)00038-X
5. Shelef M., Graham G.W. Why rhodium in automotive three-way catalysts? Catal. Rev. 1994. 36(3): 433. https://doi.org/10.1080/01614949408009468
6. Cybulski A., Moulijn J. Structured catalysts and reactors. (London; NY: Taylor&Francis, 2005). https://doi.org/10.1201/9781420028003
7. Ternan M. Large pore alumina. J. Catal. 1994. 146(2): 598. https://doi.org/10.1006/jcat.1994.1101
8. Soloviev S.A., Kurilets Ya.P., Orlik S.N., Pavlikov V.N., Garrnash E.P. Oxidation of finely dispersed carbon on coated oxide catalysts. Theor. Experim. Chem. 2003. 39 (5): 330. https://doi.org/10.1023/B:THEC.0000003495.79615.d4
9. Ismatov H.R., Abdullaev A.B. On the thermal decomposition of aluminum nitrate nonahydrate in the presence of water vapor. Zh. Priklad. Khim. 1970. 43 (3): 668. [in Russian].
10. Kašpar J., Fornasiero P., Hickey N. Automotive catalytic converters: current status and some perspectives. Catal. Today. 2003. 77 (4): 419. https://doi.org/10.1016/S0920-5861(02)00384-X
11. Mokhnachuk O.V., Solov’ev S.A., Senkevich A.I. Effect of rare earth oxides (CeO2, La2O3) on properties of Pd/Al2O3 catalysts for reduction of nitrogen oxides by methane. Theor. Experim. Chem . 2006. 42(1): 48. https://doi.org/10.1007/s11237-006-0017-4
12. Ivanova A.S., Litvak G.S., Kryukova G.N., Tsybulya S.V., Paukshtis E.A. Real structure of metastable forms of aluminum oxide. Kinet. Catal. 2000. 41 (1): 122. https://doi.org/10.1007/BF02756150
13. Soloviev S.A., Mokhnachuk O.V., Hrihorev O.N. The influence of the structural and functional characteristics of a secondary carrier Al2O3 on the physicochemical properties of palladium catalysts for CO oxidation and CH4. Nanosystems. Nanomater. Nanotechnolog . 2004. 2(1): 291. [in Russian].
14. Ivanova A.S., Moroz E.M., Polyakova G.A. Effect of method of obtaining, nature, and R2O3 (R = Y, La, Ce) content on the physical and chemicals properties of R2O3-Al2O3 composition. Kinet. Catal . 1994. 35(5): 786. [in Russian].
15. Soloviev S.A., Kapran A.Y., Orlyk S.N., Gubareni E.V. Carbon dioxide reforming of methane on monolithic Ni/Al2O3-based catalysts. J. Natural Gas Chem. 2011. 20 (2): 184.https://doi.org/10.1016/S1003-9953(10)60149-1
16. Soloviev S.A., Gubareni Ie.V., Kurilets Ya.P., Orlik S.N. Tri-reforming of methane on structured Ni-containing catalysts. Theor. Experim. Chem. 2012. 48 (3): 199. https://doi.org/10.1007/s11237-012-9262-x
17. Orlyk S.N., Kantserova M.R., Shashkova T.K., Gubareni E.V., Chedryk V.I., Soloviev S.A. Structure and size effects on the catalytic properties of complex metal oxide compositions in the oxidative conversion methane. Theor. Experim. Chem . 2013. 49(1): 22.https://doi.org/10.1007/s11237-013-9290-1
18. Harshini D., Yoon C.W., Han J., Yoon S.P., Nam S.W., Lim T.H. Catalytic steam reforming of propane over Ni/LaAlO3 catalysts: influence of preparation methods and OSC on activity and stability. Catal. Lett . 2011. 142(2): 205.
19. Zhu Y.–A. Chen D., Zhou X.G. Yuan W.K. DFT studies of dry reforming of methane on Ni catalyst. Catal. Today. 2009. 148 (3–4): 260.https://doi.org/10.1016/j.cattod.2009.08.022
20. Schuyten S., Wolf E. Selective combinatorial studies on Ce and Zr promoted Cu/Zn/Pd catalysts for hydrogen production via methanol oxidative reforming. Catal. Lett. 2006. 106 (1–2): 7. https://doi.org/10.1007/s10562-005-9183-6
21. Yong S.T., Ooi C.W., Chai S.P., Wu X.S. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes. J. Int. Hydrogen Energy. 2013. 38 (22): 9541. https://doi.org/10.1016/j.ijhydene.2013.03.023
22. Cheng W.–H. Reaction and XRD studies on Cu based methanol decomposition catalysts: role of constituents and development of high activity multicomponent catalysts. Appl. Catal. A . 1995. 130(1): 13. https://doi.org/10.1016/0926-860X(95)00102-6
23. Laosiripojana N., Assabumrungrat S. The effect of specific surface area on the activity of nano-scale ceria catalysts for methanol decomposition with and without steam at SOFC operating temperatures. Chem. Eng. Sci. 2006. 61(8): 2540. https://doi.org/10.1016/j.ces.2005.11.024
24. Shiozaki R., Hayakawa T., Liu Y., Ishii T., Kumagai M., Hamakawa S., Suzuki K., Itoh T., Shishido T., Takehira K. Methanol decomposition to synthesis gas over supported Pd catalysts prepared from synthetic anionic clays. Catal. Lett . 1999. 58(2–3): 131. https://doi.org/10.1023/A:1019065530943
25. Xi J., Wang Z., Lu G. Improvement of Cu/Zn-based catalysts by nickel additive in methanol decomposition. Appl. Catal. A. 2002. 225 (1–2): 77. https://doi.org/10.1016/S0926-860X(01)00786-4
26. Kapran A.Yu., Soloviev S.A., Orlyk S.N. Decomposition and partial oxidation of methanol over metal oxide Cu-Zn-Ce-based monoliths. Reac. Kinet. Mech. Cat. 2010. 101 (2): 343. https://doi.org/10.1007/s11144-010-0243-6
27. Kapran A.Yu., Orlyk S.N., Soloviev S.A. Decomposition of methanol on ZnO(CeO2, La2O3)-CuO-NiO-based monoliths. Reac. Kinet. Mech. Cat. 2015. 114 (1): 135. https://doi.org/10.1007/s11144-014-0765-4
28. Yang R., Xing C., Lv C., Shi L., Tsubaki N. Promotional effect of La2O3 and CeO2 on Ni/γ-Al2O3 catalysts for CO2 reforming of CH4. Appl. Catal. A. 2010. 385 (1–2): 92. https://doi.org/10.1016/j.apcata.2010.06.050
29. Matas Güell B., Torres da Silva I.M., Seshan K., Lefferts L. Sustainable route to hydrogen – Design of stable catalysts for the steam gasification of biomass related oxygenates. Appl. Catal. B . 2009. 88(1–2): 59. https://doi.org/10.1016/j.apcatb.2008.09.018
30. Özbek M.O., van Santen R.A. The mechanism of ethylene epoxidation catalysis. Catal. Lett. 2013. 143(2): 131. https://doi.org/10.1007/s10562-012-0957-3
31. Minahan D.M., Hoflund G.B., Epling W.S., Schoenfeld D.W. Study of Cs-promoted, α-alumina-supported silver, ethylene epoxidation catalysts. III. Characterization of Cs-promoted and nonpromoted catalysts. J. Catal. 1997. 168(2): 393. https://doi.org/10.1006/jcat.1997.1626
32. Goncharova S.N., Paukshtis E.A., Bal’zhinimaev B.S. Size effects in ethylene oxidation on silver catalysts. Influence of support and Cs promoter. Appl. Catal. A . 1995. 126(1): 67. https://doi.org/10.1016/0926-860X(95)00036-4
33. Patent United States 1998878. Lefort T.E. Process for the production of ethylene oxide. (23 April 1935).
34. Rubanik M.Ya., Kholyavenko K.M., Gorokhovatsky Ya.B. et al. Research of influence of macrofactors on the rate of the catalytic oxidation of ethylene. Ukr. Khim. Zhurn . 1956. 22(2): 190 [in Russian].
35. Rubanik M.Ya., Gorokhovatsky Ya.B. Partial Catalytic Oxidation of Olefins. (Kiev: Tekhnika, 1964) [in Russian].
36. Kharitonov A.S., Sobolev V.I., Panov G.I. Hydroxylation of aromatic compounds by nitrous oxide. New possibilities of oxidative zeolite catalysis on zeolites. Russ. Chem. Rev . 1992. 61(11): 1130. https://doi.org/10.1070/RC1992v061n11ABEH001021
37. Grant R.B., Harbach Ch.A.J., Lambert R.M., Tan S.A. Alkali metal, chlorine and other promoters in the silver-catalysed selective oxidation of ethylene. J. Chem. Soc. Faraday Trans.1 . 1987. 83(7): 2035. https://doi.org/10.1039/f19878302035
38. Tan S.A., Grant R.B., Lambert R.M. The silver-catalysed decomposition of N2O and the catalytic oxidation of ethylene by N2O over Ag(111) and Ag/α-Al2O3. J. Catal . 1987. 104(1): 156. https://doi.org/10.1016/0021-9517(87)90345-9
39. Yong Y.S., Cant N.W. Comparative study of nitrous oxide and oxygen as oxidants for the conversion of ethylene to ethylene oxide over silver. Appl. Catal. 1989. 48 (1): 37. https://doi.org/10.1016/S0166-9834(00)80264-X
40. Egashira M., Kuczkowski R.L., Cant N.W. The stereochemistry of ethylene-1,2-d2 epoxidation over silver catalysts. J. Catal. 1980. 65 (2): 297. https://doi.org/10.1016/0021-9517(80)90307-3
41. Kapran A.Yu., Orlik S.N. Effect of alkali metal additives on the activity and selectivity of structured silver catalysts in epoxidation of ethylene by nitrogen(I) oxide. Theor. Experim. Chem . 2005. 41(6): 377. https://doi.org/10.1007/s11237-006-0006-7
42. Remy H. Lehrbuch der Anorganischen Chemie. Band 1. (Leipzig: Akade-mischeVerlagsgesellschaft, 1970).
43. Boronin A.I., Avdeev V.I., Koshcheev S.V. Murzakhmetov K.T., Ruzankin S.F., Zhidomirov G.M. The concept of quasimolecular electrophilic oxygen in ethylene epoxidation over silver. Kinet. Catal . 1999. 40(5): 721. [in Russian].
44. Patent Ukraine 77552. Kantserova M.R., Orlik S.N., Soloviov S.A. Catalyst for the deep oxidation of hydrocarbons. (25 February 2013).
45. Kantserova M.R., Orlik S.N. Effect of a structure–size factor on the catalytic properties of complex oxide compositions in the reaction of deep methane oxidation. Kinet. Catal . 2007. 48(3): 414. https://doi.org/10.1134/S0023158407030111
46. Patent Ukraine 65892. Kosmambetova G.R., Kantserova M.R., Orlik S.N. The method of preparation of catalyst of deep oxidation of methane. (15 April 2004).
47. Choudhary V.R., Rajput A.M., Prabhakar B. Low temperature oxidative conversion of methane to syngas over NiO-CaO catalyst. Catal. Lett. 1992. 15 (4): 363. https://doi.org/10.1007/BF00769159
48. Vergunst T., Linders M.J.G., Kapteijn F. Moulijn J.A. Carbon-based monolithic structures. Catal. Rev. 2001. 43 (3): 291.
49. Gandıa L., Vicente M., Gil A. Preparation and characterization of manganese oxide catalysts supported on alumina and zirconia-pillared clays. Appl. Catal. A. 2000. 196 (2): 281. https://doi.org/10.1016/S0926-860X(99)00479-2
50. Soloviev S.A., Kyriienko P.I., Popovych N.O. Effect of CeO2 and Al2O3 on the activity of Pd/Co3O4/cordierite catalyst in the three-way catalysis reactions (CO/NO/CnHm). J. Environ. Sci. (China) . 2012. 24(7): 1327. https://doi.org/10.1016/S1001-0742(11)60930-3
51. Kirienko P.I., Soloviev S.A., Orlik S.N. Effect of CeO2 on the properties of the Pd/Co3O4/cordierite catalyst in the conversion of CO, NO, and hydrocarbons. Theor. Experim. Chem. 2010. 46(1): 39. https://doi.org/10.1007/s11237-010-9118-1
52. Boichuk T.M., Struzhko V.L., Orlik S.N. Reduction of N2O and NO over H-ZSM-5- and ZrO2-supported iron- and cobalt-containing catalysts. Russ. J. Applied. Chem. 2010. 83 (10): 1742. https://doi.org/10.1134/S1070427210100034
53. Martsenyuk-Kukharuk M.G., Orlik S.N., Ostapyuk V.A. Development and investigation of the catalysts for complex purification of natural gas combustion products. Environmental Catalysis . (Rome: SCI Publishers, 1995).
54. Kirienko P.I., Boichuk T.M., Orlik S.N., Soloviev S.A. Influence of H2O and SO2 on the activity of deposited cobalt oxide catalysts in the processes of reduction of nitrogen(I),(II) oxides with carbon monoxide and C3-C4 alkanes. Theor. Experim. Chem . 2011. 47(6): 384.https://doi.org/10.1007/s11237-012-9231-4
55. Dosumov K. Deactivation of polyoxide catalysts and their regeneration. Catal. Prom. 2009. 2: 43 [in Russian].https://doi.org/10.1134/s2070050409010103
56. Orlik S.N. Combined effect of the redox and acid-base properties of catalysts in redox conversions of nitrogen oxides and methane. Kinet. Catal. 2008. 49 (4): 537. https://doi.org/10.1134/S0023158408040137
57. Orlyk S.N. Design of bifunctional catalysts for nitrogen(I), (II) oxides reduction by C1-, C3–C4-hydrocarbons at H2O and SO2 presence. Catal. Today. 2012. 191 : 79. https://doi.org/10.1016/j.cattod.2012.06.017
58. Orlyk S.N., Mironyuk T.V., Boichuk T.M. Structural functional design of catalysts for conversion of nitrogen (I, II) oxides. Theor. Experim. Chem. 2012. 48 (2): 73. https://doi.org/10.1007/s11237-012-9244-z
59. Orlyk S.M., Mironyuk T.V., Boichuk T.M. Surface active sites of modified zeolites and zirconia in the conversion of nitrogen(I,II) oxides. Ads. Sci. Tech. 2007. 25 (1): 23. https://doi.org/10.1260/026361707781485771
60. Popovych N., Kirienko P., Soloviev S., Orlyk S. Selective catalytic reduction of NOx by C2H5OH over Ag/Al2O3/cordierite: Effect of the surface concentration of silver. Catal. Today . 2012. 191: 38. https://doi.org/10.1016/j.cattod.2012.01.039
61. Popovich N.A., Kiriienko P.I., Soloviev S.A. Orlik S.N., Dzwigaj S. Role of active components of an Ag/Al2O3/cordierite catalyst in selective reduction of NO by ethanol. Theor. Experim. Chem . 2012. 48(4): 258. https://doi.org/10.1007/s11237-012-9270-x
62. Kyriienko P., Popovych N., Soloviev S. Orlyk S. Remarkable activity of Ag/Al2O3/cordierite catalysts in SCR of NO with ethanol and butanol. Appl. Catal. B. 2013. 140–141 : 691. https://doi.org/10.1016/j.apcatb.2013.04.067
DOI: https://doi.org/10.15407/hftp06.03.273
Copyright (©) 2015 S. N. Orlyk, S. O. Soloviev, A. Yu. Kapran, M. R. Kantserova, P. I. Kyriienko, E. V. Gubareni
This work is licensed under a Creative Commons Attribution 4.0 International License.