Effect microcellulose on physical and mechanical properties of epoxycomposites
DOI: https://doi.org/10.15407/hftp06.03.380
Abstract
Keywords
References
1. Starokadomsky D.L. About influence of non-modified nanosilica on physico-chemical properties of epoxy-polymer composites. Russ. J. Appl. Chem. 2008. 12: 2045. [in Russian].
2. Choi Y.Y., Lee S.H., Ryu S.H. Effect of silane functionalization of montmorillonite on epoxy/montmorillonite nanocomposite. Polym. Bull. 2009. 63: 47. https://doi.org/10.1007/s00289-009-0068-5
3. Starokadomsky D.L. About market of composites today. Kompozitnyy mir. 2009. 12: 11 [in Russian].
4. Demchenko V.L, Shtompel V.I., Vilensky V.O. About structure of composite from net polymers with oxides of Fe(III) and Al(III). Polym. J. 2009. 31(3): 235. [in Ukrainian].
5. Lepoittevina B., Pantoustiera N., Devaickenaerea M. Polymer/layered silicate nanocomposites by combined intercalative polymerisation and melt intercalation: a masterbatch process. Polymer. 2003. 44(7): 2033.https://doi.org/10.1016/S0032-3861(03)00076-4
6. Dobrotvor I., Stuhlak P., Buketov A. Optimisation of disperced filler in epoxycomposites. Phys.-Chem. Mechanics of Materials. 2009. 6: 32. [in Ukrainian].
7. Lyopo V., Struk V., Avdeychik S. About mechanism of doping nanomodifiers in polymer matrix. Plastic Masses.2007. 8: 36 [in Russian].
8. Greef N., Gorbatikh L., Godara A. et al. The effect of carbon nanotubes on the damage development in carbon/fiber epoxy composites. Carbon. 2011. 49: 4650. https://doi.org/10.1016/j.carbon.2011.06.047
9. Gao L., Chou T.W., Thostenson E.T., Zhang Z., Coulaud M. In situ sensing of impact damage in epoxy/glass fiber composites using percolating carbon nanotube networks. Carbon. 2011. 49(10): 3382.https://doi.org/10.1016/j.carbon.2011.04.003
10. Gerasin V., Antipov A., Karbuchev V. Kulichikhin V.G., Karpacheva V.G., Tal'roze R.V., Kudryavtsev Ya.V. New means to create a new polymer nanocomposites: from construction materials to hi-tec devices. Uspehi Himii.2013. 82(4): 303. [in Russian].
11. Lipatov Yu.S. Physico-chemistry of filled polymers. (Kiev: Naukova Dumka, 1991) [in Russian].
12. Roy D., Semsarilar M., Guthrie J.T., Perrier S. Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. 2009. 38: 2046. doi: 10.1039/B808639G. https://doi.org/10.1039/b808639g
13. Galysh V.V., Kartel N.T., Milutin V.V. Synthezis end sorption properties of combinated cellulose-inorganic sorbents for concentration of cesium. Poverkhnost (Surface). 2013. 5(20): 135 [in Russian].
14. Filho E.S., Junior L.S., Silva M.F. et al. Surface cellulose modification with 2-aminomethylpyridine for copper, cobalt, nickel and zinc removal from aqueous solution. Materials Research. 2013. 16(1): 79.https://doi.org/10.1590/S1516-14392012005000147
15. Klemm D., Philipp B., Heinze T. Comprehensive Cellulose Chemistry. (Weinheim, Germany: Wiley-VCH, 1998).
16. Low I.M., Somers J., Kho H.S., Davies I.J., Latella B.A. Fabrication and properties of recycled cellulose fibre-reinforced epoxy composites. Composite Interfaces. 2009. 16(7–9): 659.https://doi.org/10.1163/092764409X12477417562210
17. Kuo Pei-Yu, Yan N., Sain M. Influence of cellulose nanofibers on the curing behavior of epoxy/amine systems.Eur. Polym. J. 2013. 49: 3778. https://doi.org/10.1016/j.eurpolymj.2013.08.022
DOI: https://doi.org/10.15407/hftp06.03.380
Copyright (©) 2015 S. V. Shulga, D. L. Starokadomsky, A. M. Levina, A. V. Zorina, V. M. Ogenko
This work is licensed under a Creative Commons Attribution 4.0 International License.