Chemistry, Physics and Technology of Surface, 2015, 6 (3), 399-408.

Bound water in DNA-chlorophyllin complex



DOI: https://doi.org/10.15407/hftp06.03.399

V. A. Kashpur, D. A. Pesina, O. V. Khorunzhaya, V. Ya. Maleev, A. V. Shestopalova

Abstract


For studying the interaction between DNA and chlorophyllin (CHLN), the complex dielectric permittivity in the range of extremely high frequencies has been measured for solutions of chlorophyllin and DNA–chlorophyllin complex. From the values obtained the degree of hydration and the probable hydration centers have been determined for CHLN. It has been also found that formation of the complex is accompanied by changes in dielectric parameters of DNA solution. It has been shown that these changes are caused by some decrease in the bound water amount on the surfaces of nucleic acid and ligand. From the analysis of the effects revealed, it has been concluded that the DNA–CHLN complex is characterized by a sufficiently strong binding between nucleic acid and chlorophyllin.

Keywords


DNA; chlorophyllin; complex; dielectric permittivity; hydration

Full Text:

PDF (Русский)

References


1. Dashwood R.H. Chlorophylls as anticarcinogens (Review). Int. J. Oncol. 1997. 10(4): 721. 

2. Vesenick D.C., De Paula N.A., Niwa A.M., Mantovani M.S. Evaluation of the effects of chlorophyllin on apoptosis induction, inhibition of cellular proliferation and mRNA expression of CASP8, CASP9, APC and β-catenin. Curr. Res. J. Biol. Sci. 2012. 4(3): 315.

3. Pietrzak M., Wieczorek Z., Wieczorek J., Darzynkiewicz Z. The «interceptor» properties of chlorophyllin measured within the three-component system: Intercalator–DNA–chlorophyllin. Bioph. Chem. 2006. 123(1): 11.https://doi.org/10.1016/j.bpc.2006.03.018

4. Neault J.F., Tajmir-Riahi H.A. Structural analysis of DNA-chlorophyll complexes by Fourier transform infrared difference spectroscopy. Biophys. J. 1999. 76(4): 2177. https://doi.org/10.1016/S0006-3495(99)77372-8

5. Kostjukov V.V., Khomutova N.M., Evstigneev M.P. Hydration change on complexation of aromatic ligands with DNA: molecular dynamics simulations. Biopolymers and Cell. 2010. 26(1): 36 [in Russian].https://doi.org/10.7124/bc.000142

6. Tajmir-Riahi H.A., Neault J.F., Diamantoglou S. DNA adducts with chlorophyll and chlorophyllin as antimutagenic agents: synthesis, stability, and structural features. Methods Mol. Biol. 2004. 274: 159.https://doi.org/10.1385/1-59259-799-8:159

7. Poornima C.S., Dean P.M. Hydration in drug design. 1. Multiple hydrogen-bonding features of water molecules in mediating protein-ligand interactions. J. Comput. Aided Mol. Des. 1995. 9(6): 500.https://doi.org/10.1007/BF00124321

8. Qu X., Chaires J.B. Hydration changes for DNA intercalation reactions. J. Amer. Chem. Soc. 2001. 123(1): 1.https://doi.org/10.1021/ja002793v

9. Han F., Chalikian T.V. Hydration changes accompanying nucleic acid intercalation reactions: volumetric characterizations. J. Amer. Chem. Soc. 2003. 125(24): 7219. https://doi.org/10.1021/ja030068p

10. Cuya Guizado T.R., Louro S.R.W., Anteneodo C. Hydration of hydrophobic biological porphyrins. J. Chem. Phys. 2011. 134(5): 055103. https://doi.org/10.1063/1.3544376

11. Mancera R.L. Molecular modeling of hydration in drug design. Curr. Opin. Drug Disc. Devel. 2007. 10(3): 275. PMid:17554853

12. Khorunzhaya O.V., Kashpur V.A., Pesina D.A., Maleev V.Ya. Hydration changes under complexation of DNA with some intercalators. Biophysical Bulletin. 2010. 24(1): 5 [in Russian].

13. Kashpur V.A., Khorunzhaya O.V., Maleev V.Ya. Hydration changes in complexation of DNA with ligands as revealed by dielectrometry. Dopovidi NAN Ukrayiny. 2010. 7: 170 [in Russian].

14. Kashpur V. A., Maleyev V. Ya., Shchegoleva T.Yu. Issledovaniya gidratatsii globulyarnykh belkov differentsial'nym dielektrometri-cheskim metodom. Molecular Biology. 1976. 10: 568 [in Russian].

15. Kashpur V.A., Maleyev V.Ya., Khorunzhaya O.V. Application of differential method of EHF dielectrometry in molecular biophysics. Radíofízika ta elektroníka. 2008. 13: 446 [in Russian].

16. Ellison W. J., Lamkaouchi K., Moreau J.-M. Water: A dielectric reference. J. Mol. Liquids. 1996. 68(2–3): 171.https://doi.org/10.1016/0167-7322(96)00926-9

17. Hippel A.R. Dielectrics and Waves. (New York: Wiley, 1954).

Hasted J.B., Roderick G.W. Dielectric properties of aqueous and alcoholic electrolytic solutions. J. Chem. Phys.1958. 29(1): 17. https://doi.org/10.1063/1.1744418

18. Antropov L.I. Teoreticheskaya elektrokhimiya. (Moskva: Vysshaya shkola, 1975) [in Russian].

19. Rabinovich V.A., Khavin Z.Ya. Kratkiy khimicheskiy spravochnik. (Leningrad: Khimiya, 1978) [in Russian].

20. Kaatze U. The dielectric properties of water in its different states of interaction. J. Solut. Chem. 1997. 26(11): 1049. https://doi.org/10.1007/BF02768829

21. Mashimo S., Kuwabara S., Yagihara S., Higasi K. Dielectric relaxation time and structure of bound water in biological materials. J. Phys. Chem. 1987. 91(25): 6337. https://doi.org/10.1021/j100309a005

22. Craig D.Q.M. Dielectric analysis of pharmaceutical systems. (London, Bristol: Taylor & Francis, 1995).

23. Globus T.R., Woolard D.L., Khromova T., Crowe T.W., Bykhovskaia M., Gelmont B.L., Hesler J., Samuels A.C. THz-spectroscopy of biological molecules. J. Biol. Phys. 2003. 29(1): 89.https://doi.org/10.1023/A:1024420104400

24. Bresler S.Ye. Vvedeniye v molekulyarnuyu biologiyu. (Moskva: Nauka, 1970) [in Russian].

25. Privalov P.L. Biophysics (Biofizika). 1968. 13(1): 163 [in Russian].

26. Harmouchi M., Albiser G., Premilat S. Changes of hydration during conformational transitions of DNA. Eur. Biophys. J. 1990. 19(2): 87. https://doi.org/10.1007/BF00185091

27. Saenger W. Principles of nucleic acid structure. (NY-Berlin-Heidelberg-Tokyo: Springer-Verlag, 1984).

28. Buchanan T.J., Haggis G.H., Hasted J.B. The dielectric estimation of protein hydration. Proc. Roy. Soc. 1952.A213(1114): 379. https://doi.org/10.1007/BF02394559

29. Bonchev D., Cremaschi P. C-H group as proton donor by formation of a weak hydrogen bond. Theoret. Chim. Acta (Berl.) 1974. 35(1): 69.

30. Sun J., Bousquet D., Forbert H., Marx D. Glycine in aqueous solution: solvation shells, interfacial water, and vibrational spectroscopy from ab initio molecular dynamics. J. Chem. Phys. 2010. 133(11): 114508.https://doi.org/10.1063/1.3481576

31. Kharakoz D.P. Partial molar volumes of molecules of arbitrary shape and the effect of hydrogen bonding with water. J. Solut. Chem. 1992. 21(6): 569. https://doi.org/10.1007/BF00649565

32. Pastor N. The B- to A-DNA transition and the reorganization of solvent at the DNA surface. Bioph. J. 2005.88(5): 3262. https://doi.org/10.1529/biophysj.104.058339

33. Umehara T., Kuwabara S., Mashimo S., Yagihara S. Dielectric study on hydration of B-, A-, and Z-DNA. Biopolymers. 1990. 30(7–8): 649. https://doi.org/10.1002/bip.360300702




DOI: https://doi.org/10.15407/hftp06.03.399

Copyright (©) 2015 V. A. Kashpur, D. A. Pesina, O. V. Khorunzhaya, V. Ya. Maleev, A. V. Shestopalova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.