Chemistry, Physics and Technology of Surface, 2015, 6 (4), 474-480.

Determination of molybdenum oxidation state on the mechanochemically treated MoO3



DOI: https://doi.org/10.15407/hftp06.04.474

N. S. Kopachevska, A. K. Melnyk, I. V. Bacherikova, V. A. Zazhigalov, K. Wieczorek-Ciurowa

Abstract


The molybdenum oxidation degree in the MoOsamples after mechanochemical treatment in various media (air, water, ethanol) has been studied by titration, EPR and XANES methods. It has been shown that molybdenum reduction proceeds in all the media used and its degree is determined by powder loading (rotation speed and time treatment) and medium nature. The XANES spectra demonstrate that MoO3 reduction leads to Mo5+ ions formation only. The maximal reduction degree is observed at treatment in ethanol. Existence of charged oxygen species located within Mo5+ environment was also shown.

Keywords


mechanochemical treatment; oxidation degree; MoO3; EPR spectra

Full Text:

PDF

References


1. Ertl G., Knözinger H., Weitkamp J. (Eds). Handbook of heterogeneous catalysis. (Wainheim: Wiley-VCH, 2008).

2. Golodets G.I. Heterogeneous catalytic reactions involving molecular oxygen. Stud. Surf. Sci. Catal. 1983. 15: 1.

3. Ertl G., Knözinger H., Weitkamp J. (Eds). Preparation of solid catalysts. (Wainheim: Wiley-VCH, 1999).

4. Zazhigalov V.A., Haber J., Stoch J., Kharlamov A.I., Bacherikova I.V., Bogutskaya L.V. Alternative methods to prepare and modify vanadium-phosphorus catalysts for selective oxidation of hydrocarbons. Stud. Surf. Sci. Catal. 1997. 110: 337.https://doi.org/10.1016/S0167-2991(97)80994-9

5. Avvakumov E., Senna M., Kosova N. Soft mechanochemical synthesis: A basis for new chemical technologies. (Boston: Kluwer AP, 2001).

6. Zazhigalov V.A., Haber J., Stoch J., Bogutskaya L.V., Bacherikova I.V. Mechanochemistry in preparation and modification of vanadium catalysts. Stud. Surf. Sci. Catal. 1996. 101 B: 1039.

7. Mestl G., Srinivasan T.K.K., Knozinger H. Mechanically activated MoO3. 1. Particle size, crystallinity and morphology. Langmuir. 1995. 11(8): 3027.https://doi.org/10.1021/la00008a030

8. Mestl G., Verbuggen N.F.D., Knozinger H. Mechanically activated MoO3. 2. Characterization of defect structures. Langmuir. 1995. 11(8): 3035.https://doi.org/10.1021/la00008a031

9. Pluboyarov V.A., Kiselevich S.N., Kirichenko O.A., Pauli I.A., Korotaeva Z.A., Dektyarev S.P., Ancharov A.I. Effect of mechanical activation on the physicochemical properties of MoO3. Inorg. Mater. 1998. 34(11): 1365 [in Russian].

10. Zazhigalov V.A., Khalameida S.V., Litvin N.S, Bacherikova I.V., Stoch J., Depero L. Effect of the mechanochemical treatment of a V2O5/MoO3 oxide mixture on its properties. Kinet. Catal. 2008. 49(5): 692.https://doi.org/10.1134/S0023158408050145

11. Bielanski A., Najbar M. V2O5-MoO3 catalysts for benzene oxidation. Appl. Catal. A. 1997. 157(1–2): 223.https://doi.org/10.1016/S0926-860X(97)00018-5

12. Haber J., Lalik E. Catalytic properties of MoO3 revisited. Catal. Today. 1997. 33(1–3): 119.https://doi.org/10.1016/S0920-5861(96)00107-1

13. Skwarek E., Khalameida S., Janusz W., Sydorchuk V., Konovalova N., Zazhigalov V., Skubiszewska-Zięba J., Leboda R. Influence of mechanochemical activation on structure and some properties of mixed vanadium-molybdenum oxides. J. Therm. Anal. Calorim. 2011. 106(3): 881.https://doi.org/10.1007/s10973-011-1744-x

14. Volta J.C., Portefaix J.L. Structure sensitivity of mild oxidation reactions on oxide catalysts – a review. Appl. Catal. 1985. 18(1): 1.https://doi.org/10.1016/S0166-9834(00)80296-1

15. Volta J.C. Structure sensitivity of MoO3 in mild oxidation of propylene. J. Catal. 1985. 93(2): 467.https://doi.org/10.1016/0021-9517(85)90194-0

16. Bogutskaya L.V., Khalameida S.V., Zazhigalov V.A., Kharlamov A.I., Lyashenko L.V., Byl' O.G. Effect of mechanochemical treatment on the structure and physicochemical properties of MoO3. Theor. Exp. Chem. 1999. 35(4): 242.https://doi.org/10.1007/BF02511524

17. Zazhigalov V.A., Khalameida S.V., Zaitsev Yu.P., Bacherikova I.V. Proc. 4th Int. Cong. Oxid. Catal. (September, 2001, Berlin/Potsdam, Germany) P. 291.

18. Valente N.G., Cadús L.E., Gorriz O.F., Arrúa L.A., Rivarola J.B. Synergy in the Sn-Mo-O catalysts: The selective oxidation of methanol. Appl. Catal. A. 1997. 153(1–2): 119.https://doi.org/10.1016/S0926-860X(96)00339-0

19. Ward M.B., Lin M.J., Lunsford J.H. The oxidative dehydrogenation of ethane by nitrous oxide over molybdenum oxide supported on silica gel. J. Catal. 1977. 50(2): 306.https://doi.org/10.1016/0021-9517(77)90040-9

20. Mestl G., Verbruggen N.F.D., Bosch E., Knözinger H. Mechanically activated MoO3. 5. Redox behaviour. Langmuir. 1996. 12(12): 2961.https://doi.org/10.1021/la950788c

21. Bielanski A., Haber J. Oxygen in catalysis. V. 43. (New York: Marcel Dekker, 1991).

22. Hodnett B.K. Influence of P/V ratio on the phase composition and catalytic activity of vanadium phosphate based catalysts. Appl. Catal. 1983. 6(2): 231.https://doi.org/10.1016/0166-9834(83)80267-X

23. Parker G.A. Analytical chemistry of molybdenum. (Berlin: Springer-Verlag, 1983). https://doi.org/10.1007/978-3-642-68992-5

24. Serwicka E. ESR evidence for structural rearrangements occurring upon MoO3 reduction. J. Solid State Chem. 1984. 51(3): 300.https://doi.org/10.1016/0022-4596(84)90346-3

25. Litvin N.S., Khalameida S.V., Zazhigalov V.O. Modification of molybdenum oxide MoO3 surface by mechanochemical treatment. Chem. Phys. Tech. Surf. 2010. 1(1): 50. [in Ukrainian].

26. Wieczorek-Ciurowa K., Litvin N., Zazhigalov V. Peculiarities of mechanochemical activation of MoO3 with respect to catalytic processing of bioethanol. Przemysł chemiczny. 2011. 90(7): 1404. [in Polish].

27. Petrakis L., Mayer P.L., Debies T.P. ESR and XPS investigation of a Mo-η-Al2O3 model catalyst system and its interaction with adsorbed aromatics. J. Phys. Chem. 1980. 84(9): 1020.https://doi.org/10.1021/j100446a018

28. Sunu S.S., Prabhu E., Jayaraman V., Gnanasekar K.I., Seshagiri T.K., Gnanasekaran T. Electrical conductivity and gas sensing properties of MoO3. Sens. Actuator. B. 2004. 101(1–2): 161.https://doi.org/10.1016/j.snb.2004.02.048

29. Sarode P.R., Ramasesha S., Madhusudan W.H., Rao C.N.R. Relation between atomic charge and chemical shifts in x-ray absorption spectra of transition metal compounds. J. Phys. C. 1979. 12(12): 2439.https://doi.org/10.1088/0022-3719/12/12/029

30. Ressler T., Timpe O., Neisius T., Find J., Mestl G., Dieterle M., Schlogl R. Time-resolved XAS investigation of the reduction/oxidation of MoO3-x. J. Catal. 2000. 191(1): 75.https://doi.org/10.1006/jcat.1999.2772

31. Aritani H., Shibasaki H., Orihara H., Nakahira A. Methane dehydroaromatization over Mo-modified H-MFI for gas to liquid catalysts. J. Environ. Sci. (China). 2009. 21(6): 736.https://doi.org/10.1016/S1001-0742(08)62333-5




DOI: https://doi.org/10.15407/hftp06.04.474

Copyright (©) 2015 N. S. Kopachevska, A. K. Melnyk, I. V. Bacherikova, V. A. Zazhigalov, K. Wieczorek-Ciurowa

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.