Chemistry, Physics and Technology of Surface, 2015, 6 (4), 489-497.

Influence of local electric fields on the photoluminescence of CdS nanocrystals on the oxidized macroporous silicon surface



DOI: https://doi.org/10.15407/hftp06.04.489

L. Karachevtseva, S. Kuchmii, O. Lytvynenko, K. Parshyn, O. Sapelnikova, O. Stroyuk, Wang Bo

Abstract


Oxidized macroporous silicon structures with CdS surface nanocrystals have been proposed to enhance the photoluminescence of CdS nanoparticles due to reducing the electron recombination outside the nanoparticle layer. It has been found that the resonance electron scattering on the Si–SiO2 interface for samples with low concentration of Si–O–Si states transforms into scattering on ionized surface states for samples with high concentration of Si–O–Si in the structured oxide. The maximum intensity of photoluminescence was measured for a structure with the maximal strength of the local electric field at the interface of silicon matrix with the structured oxide. It indicates a significant decrease of non-radiative recombination of electrons generated in CdS nanocrystal layer due to the counter flow of electrons from the silicon matrix towards the nanocrystals layer. The quantum yield of photoluminescence increases with time due to evaporation of water molecules.

Keywords


local electric fields; CdS nanocrystals; photoluminescence; oxidized macroporous silicon

Full Text:

PDF

References


1. Raevskaya A.E., Stroyuk A.I., Kuchmii S.Ya. Optical characteristics of colloidal nanoparticles CdS stabilized with sodium polyphosphate and their behavior during pulse photoexcitation. Theor. Exp. Chem. 2003. 39(3): 158. https://doi.org/10.1023/A:1024933023783 

2. Chistyakov A.A., Martynov I.L., Mochalov K.E., Oleinikov V.A., Sizova S.V., Ustinovich E.A., Zakharchenko K.V. Interaction of CdSe/ZnS Core–Shell Semiconductor Nanocrystals in Solid Thin Films. Laser Physics. 2006. 16(12): 1625. https://doi.org/10.1134/S1054660X06120061 

3. Birner A. Wehrspohn R.B., Gösele U.M. Busch K. Silicon-Based Photonic Crystals. Adv. Mater. 2001. 13(6): 377. https://doi.org/10.1002/1521-4095(200103)13:6<377::AID-ADMA377>3.0.CO;2-X 

4. Karachevtseva L.A. Two-dimensional photonic crystals as perspective materials of modern nanoelectronics. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2005. 7(4): 430.

5. Glushko A., Karachevtseva L. Photonic band structure in oxidized macroporous silicon. Opto-Electronics Review. 2006. 4(3): 201. https://doi.org/10.2478/s11772-006-0026-9 

6. Karachevtseva L., Onyshchenko V. Sachenko A. Photocarrier transport in 2D macroporous silicon structures. Opto-Electronics Review. 2010. 18(4): 394. https://doi.org/10.2478/s11772-010-0042-7 

7. Cullis A.G., Canham L.T., Calcott P.D.J. The structural and luminescence properties of porous silicon. J. Appl. Phys. 1997. 82(3): 909. https://doi.org/10.1063/1.366536 

8. Nickel N.H., Mei P., Boyce J.B. On the nature of the defect passivation in polycrystalline silicon by hydrogen and oxygen plasma treatments. IEEE Trans. Electron Devices. 1995. 42(8): 1559. https://doi.org/10.1109/16.398672 

9. Harrick N.J. Internal Reflection Spectroscopy. (New York/London/Sydney: Interscience Publishers, 1967).

10. Vinogradov E.A. Semiconductor microcavity polaritons. Physics-Uspekhi. 2002. 45(12): 1213 [in Russian]. https://doi.org/10.1070/PU2002v045n12ABEH001189 

11. Priox F., Balkanski M. Infrared Measurements on CdS Thin Films Deposited on Aluminium. Phys. Stat. Sol. 1969. 32(1): 119. https://doi.org/10.1002/pssb.19690320114 

12. Vinogradov E.A., Zhizhin G.N., Yakovlev V.A. Resonance between dipole oscillations of atoms and interference modes in crystalline films. Sov. Phys. JETP. 1979. 50(3): 486 [in Russian].

13. Karachevtseva L.A., Ivanov V.I., Lytvynenko O.O., Parshin K.A., Stronska, O.J. The impurity Franz-Keldysh effect in 2D photonic macroporous silicon structures. Appl. Surf. Sci. 2008. 255(5): 3328. https://doi.org/10.1016/j.apsusc.2008.09.038 

14. Karachevtseva L.A., Kuchmii S.Ya., Konin K.P., Lytvynenko O.O., Stroyuk A.L. Room temperature Wannier–Stark effect in 2D macroporous silicon structures with nanocoatings. Chemistry, Physics and Technology of Surface. 2011. 2(2): 105.

15. Karachevtseva L., Kuchmii S., Lytvynenko O., Sizov F., Stronska O., Stroyuk A. Oscillations of light absorption in 2D macroporous silicon structures with surface nanocoatings. Appl. Surf. Sci. 2010. 257(8): 3331 . https://doi.org/10.1016/j.apsusc.2010.11.016 

16, Seraphin B.O., Bottka N. Band-Structure Analysis from Electro-Reflectance Studies. Phys. Rev. 1966. 145: 628. https://doi.org/10.1103/PhysRev.145.628 

17. Enderlein R. The Influence of Collisions on Franz-Keldysh Effect. Phys. Stat. Sol. 1967. 20: 295. https://doi.org/10.1002/pssb.19670200128 

18. Vodopyanov L.K., Vinogradov E.A., Kolotkov V.V., Mityagin Yu.A. Optical properties of cadmium telluride in the far-IR. Sov. Phys. Solid State. 1974. 16(5): 1419 [in Russian].

19. Chestnoy N., Harris T.D., Hull R., Brus L.E. Luminescence and Photophysics of Cadmium Sulfide Semiconductor Clusters: The Nature of the Emitting Electronic State. J. Phys. Chem. 1986. 90(15): 3393. https://doi.org/10.1021/j100406a018 

20. Pokhodenko V.D., Kuchmii S.Ya., Korzhak A.V., Kryukov A.I. Photochemical behavior of nanoparticles of cadmium sulfide in the presence of a reducing agent. Theor. Exp. Chem. 1996. 32(2): 88. https://doi.org/10.1007/BF01373092 




DOI: https://doi.org/10.15407/hftp06.04.489

Copyright (©) 2015 L. Karachevtseva, S. Kuchmii, O. Lytvynenko, K. Parshyn, O. Sapelnikova, O. Stroyuk, Wang Bo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.