Chemistry, Physics and Technology of Surface, 2015, 6 (4), 535-544.

Structured materials based on hydroxyapatite and gelatine for biomedical application



DOI: https://doi.org/10.15407/hftp06.04.535

A. A. Yanovska, V. N. Kuznetsov, A. S. Stanislavov, E. V. Gusak, M. V. Pogorelov, S. N. Danilchenko

Abstract


The composite materials hydroxyapatite-gelatin (HA–Gel) and hydroxyapatite-gelatin-Ag (HA–Gel–Ag) were obtained in this work. The estimation of porosity, in vivo testing, surface morphology and phase composition as well as the features of chemical interactions between material components were provided. The main phase in obtained composites is hydroxyapatite (HA). The analysis of IR-spectroscopy results reveals the interaction between hydroxyapatite and silver as well as between gelatin and silver ions in composite materials obtained by co-precipitation from aqueous solutions. The obtained silver-containing composite materials that contain silver are biocompatible and bio-resorbable with high level of porosity (75–85%) and osteoconductive properties.

Keywords


hydroxyapatite; gelatin; composite materials; biocompatibility

Full Text:

PDF (Русский)

References


1. Zethraeus N., Borgstorm F., Strom O., KAnis J., Jonsson B. Cost-effectiveness of the treatment and prevention of osteoporosis – a review of the literature and a references model. Osteoporosis International. 2007. 18: 9. https://doi.org/10.1007/s00198-006-0257-0 

2. Zhou Y., Zhao Y., Wang L., Xu L., Zhai M., Wei S. Radiation synthesis and characterization of nanosilver/gelatin/carboxymethyl chitosan hydrogel. Radiat. Phys. Chem. 2012. 81: 553. https://doi.org/10.1016/j.radphyschem.2012.01.014 

3. Golovan A.P., Rugal A.A., Gun'ko V.M., Barvinchenko V.N., Skubiszewska-Zięba Ya., Leboda R., Krupska T.V., Turov V.V. Modeling of bone tissue by nanocomposite systems on the basis of hydroxyapatite – albumin – gelatine and their properties. Surface. 2010. 2(17): 244. [in Russian].

4. Keaveny T.M., Morgan E.F., Niebur G.L., Yeh O.C. Biomechanics of trabecular bone. Annual Rev. Biomedical Engineering. 2001. 3: 307. https://doi.org/10.1146/annurev.bioeng.3.1.307 

5. Kailasanathan C., Selvakumar N., Naidu Vasant. Structure and properties of titania reinforced nano-hydroxyapatite/gelatin bio-composites for bone graft materials. Ceramics International. 2012. 38: 571. https://doi.org/10.1016/j.ceramint.2011.07.045 

6. Mour M., Das D., Winkler T., Hoenig E., Mielke G., Morlock M.M., Schilling A.F. Advances in Porous Biomaterials for Dental and Orthopaedic Applications. Materials. 2010. 3: 2947. https://doi.org/10.3390/ma3052947 

7. Safronova T.V., Putlyaev V.I. Inorganic materials science for medicine in Russia: Materials based on calcium phosphates. Nanosystems: physics, chemistry, mathematics. 2013. 4(1): 24. [in Russian].

8. Monteiro D.R., Gorup L.F., Takamiya A.S., Ruvollo-Filho A.C., Rodrigues de Camargo E., Barbosa D.B. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Inter. J. Antimicrob. Agents. 2009. 34: 103. https://doi.org/10.1016/j.ijantimicag.2009.01.017 

9. Balazs D.J., Triandafillu K., Wood P., Chevolot Y., van Delben C., Harms H. Hollenstein C., Mathieu H.J. Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitrate treatments. Biomaterials. 2004. 25: 2139. https://doi.org/10.1016/j.biomaterials.2003.08.053 

10. Kikuchi M., Ikoma T., Itoh S., Matsumoto H.N., Koyama Y., Takakuda K., Shinomiya K., Tanaka J. Biomimetic synthesis of bone like nanocomposites using the self organization mechanism of hydroxyapatite and collagen. Compos. Sci. Technol. 2004. 64: 819.

https://doi.org/10.1016/j.compscitech.2003.09.002 

11. Guan J., Fujimoto K.L., Sacks M.S., Wagner W.R. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials. 2005. 26: 3961. https://doi.org/10.1016/j.biomaterials.2004.10.018 

12. Han N., Johnson J.K., Bradley P.A., Parikh K.S., Lannutti J.J., Winter J.O. Cell Attachment to Hydrogel-Electrospun Fiber Mat Composite Materials. J. Funct. Biomater. 2012. 3: 497. https://doi.org/10.3390/jfb3030497 

13. Maquet V., Boccaccini A.R., Pravata L., Notingher I., Jérôme R. Porous poly(α-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation. Biomaterials. 2004. 25(18): 4185. https://doi.org/10.1016/j.biomaterials.2003.10.082 

14. Naghizadeh F., Sultana N., Kadir M.R., Shihabudin T.M., Hussain R., Kamarul T. The Fabrication and Characterization of PCL/Rice Husk Derived Bioactive Glass-Ceramic Composite Scaffolds. J. Nanomater. 2014. 2014: 1.

15. Moldovan L., Craciunescu O., Oprita E.I., Balan M., Zarnescu O. Collagen-chondroitin sulfate-hydroxyapatite porous composites: preparation, characterization and in vitro biocompatibility testing. Roum. Biotechnol. Lett. 2009. 14(3): 4459.

16. Wei W., Sunb R., Jina Z., Cui J., Wei Z. Hydroxyapatite–gelatin nanocomposite as a novel adsorbent for nitrobenzene removal from aqueous solution. Appl. Surf. Sci. 2014. 292: 1020. https://doi.org/10.1016/j.apsusc.2013.12.127 

17. Danilchenko S.N., Pokrovskiy V.A., Bogatyrov V.M., Sukhodub L.F., Sulkio-Cleff B. Carbonate location in bone tissue mineral by X–ray diffraction and temperature–programmed desorption mass spectrometry. Cryst. Res. Technol. 2005. 40(7): 692. https://doi.org/10.1002/crat.200410410 

18. Shu C., Xianzhu Y., Zhangyin X., Guohua X., Hong Lv., Kangde Yao. Synthesis and sintering of nanocrystalline hydroxyapatite powders by gelatin – based precipitation method. Ceram. International. 2007. 33: 193. https://doi.org/10.1016/j.ceramint.2005.09.001 

19. Gun'ko V.M., Turov V.V., Shpilko (Golovan) A.P., Leboda R., Jablonski M., Gorzelak M., Jagiello-Wojtowicz E. Relationships between characteristics of interfacial water and human bone tissues. Coll. Surf. 2006. 53: 29. https://doi.org/10.1016/j.colsurfb.2006.07.016 

20. Mallikarjuna K, Narasimha G, Dillip G.R, Praveen B., Shreedhar B., Sree Lakshmi C., Reddy B.V.S., Deva Prasad Raju B. Green synthesis of silver nanoparticles using ocimum leaf extract and their characterization. Digest J. Nanomater. Biostruct. 2011. 6: 181.

21. Kailasanathan C., Selvakumar N., Naidu V. Structure and properties of titania reinforced nano-hydroxyapatite/gelatin bio-composites for bone graft materials. Ceramics International. 2012. 38(1): 571. https://doi.org/10.1016/j.ceramint.2011.07.045 

22. Kailasanathan C., Selvakumar N. Comparative study of hydroxyapatite/gelatin composites reinforced with bio-inert ceramic particles. Ceram. International. 2012. 38: 3569. https://doi.org/10.1016/j.ceramint.2011.12.073 

23. Wang F., Guo E., Song E., Zhao P., Liu J. Structure and properties of bone-like-nanohydroxyapatite/gelatin/polyvinyl alcohol composites. Adv. Bioscie. Biotechnol. 2010. 1: 185. https://doi.org/10.4236/abb.2010.13026 




DOI: https://doi.org/10.15407/hftp06.04.535

Copyright (©) 2015 A. A. Yanovska, V. N. Kuznetsov, A. S. Stanislavov, E. V. Gusak, M. V. Pogorelov, S. N. Danilchenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.