Chemistry, Physics and Technology of Surface, 2015, 6 (4), 545-553.

Impact of nanocomposites with prolonged release of bioactive substances on the vital activity of yeast cells



DOI: https://doi.org/10.15407/hftp06.04.545

I. V. Siora, O. S. Kukolevska, T. V. Krupska, I. I. Gerashchenko

Abstract


As a result of a study on the kinetics of carbon dioxide formation during alcohol fermentation, the stimulating effect of zinc containing nanomaterials on Saccharomyces cerevisiae yeast has been found. By the method of in vivo staining with trypan blue it has been shown that film of polyurethane the least damages yeast cells among the polymer matrices without filler (polyurethane, interpenetrating nets with polyurethane and poly (2-hydroxyethylmethacrylate)). Vice versa, nanocomposites containing silica modified with silver nitrate reduce yeast viability with increasing content of polyurethane in the matrix. This feature correlates with the rate of release of silver ions from nanocomposites to the aqueous medium.

Keywords


nanoparticles of silica; polyurethane; poly(2-hydroxyethylmethacrylate); silver nitrate; zinc sulfate; glycine; tryptophan; yeast; trypan blue; bioactivity

Full Text:

PDF (Українська)

References


1. Gerashchenko I.I. Membranotropic properties of nano-sized silica.Surface. 2009. 1(16): 288.[in Russian].

2. Siora I.V. Effect of hydrophobization and modification of nanosilica by proteins and saccharides on biocompatibility of the composites on their basis.Ph.D (Chem.) Thesis. (Kyiv, 2014). [in Ukrainian].

3. Gun’koV.M., GalaganN.P., GrytsenkoI.V., ZarkoV.I., OranskaO.I., Osaulenko V.L., BogatyrevV.M., TurovV.V. Interactionofunmodifiedand partially silylated nanosilica with red blood cells. Cent. Eur. J. Chem. 2007. 5(4): 951. https://doi.org/10.2478/s11532-007-0045-5 

4. Technological process of obtaining of biogenic stimulators. (Frunze: Kyrgyz State Med. Institute, 1983). [in Russian].

5. Krupska T.V., Volod’kina A.V., Gerashchenko I.I., Gladkikh Yu.V. Study of biostimulatory effect of placenta preparations by yeast growth test. Med. Chemistry. 2010. 12(2): 40. [in Ukrainian].

6. Krupskaya T.V., Gun’koV.M., Barvinchenko V.N., Turov V.V. Shulga O.V. Interaction of silica particles with cellular surface and state of interfacial water in area of contact. Ukr. Chem. J. 2008. 74(2): 84. [in Russian].

7. Johnson S., Nguyen V., Coder D. Assessment of Cell Viability. In: Current Protocols in Cytometry. (NY: Core Publ., John Wiley & Sons, Inc., 1997).

8. Lurie Y.Y. Analytical chemistry of industrial wastewater. (Moscow: Khimiya, 1984). [in Russian].

9. Pyatnitski I.V., Sukhan V.V. Analytical chemistry of silver. (Moscow: Nauka, 1975). [in Russian].

10. Korenman I.M. Photometric Analysis. Methods for the determination of organic compounds. (Moscow: Khimiya, 1970). [in Russian].

11. Yusupova A.I., Kamzolova S.V., Kozyreva T.N., Morgunov I.G. Yeast biosynthesis of succinic acid from ethyl alcohol. Ovchinnikov Bulletin of biotechnology and physical and chemical biology. 2006. 2(4): 7. [in Russian].

12. Kotenko S.Ts., Khalilov E.A., Islammagomedova E.A. Biochemical features of yeast strain Saccharomyces cerevisiae in conditions of spirit fermentations. Reports of the Samara Scientific Center of the Russian Academy of Sciences. 2010. 12(1): 721. [in Russian].

13. Putintseva O.V. Immunology: Practicum. V. 2. (Voronezh: Publishing house of Voronezh State University, 2008). [in Russian].

14. Anikeyev V.V., Lukomskaya K.A. Guide to practical lessons in microbiology. (Moscow: Prosveshchenie, 1977). [in Russian].

15. Philippovich Y.B. Fundamentals of Biochemistry. (Moscow: Agar, 1999). [in Russian].




DOI: https://doi.org/10.15407/hftp06.04.545

Copyright (©) 2015 I. V. Siora, O. S. Kukolevska, T. V. Krupska, I. I. Gerashchenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.