Synthesis, properties, application of graphene oxide and reduced graphene oxide obtained from multi-walled carbon nanotubes
DOI: https://doi.org/10.15407/hftp07.01.003
Abstract
Keywords
References
1. Bidault F., Brett D.J.L., Middleton P.H., Brandon N.P. Review of gas diffusion cathodes for alkaline fuel cells. J. Power Sources. 2009. 187(1): 39. https://doi.org/10.1016/j.jpowsour.2008.10.106
2. Soehn M., Lebert M., Wirth T., Hofmann S., Nicoloso N. Design of gas diffusion electrodes using nanocarbon. J. Power Sources. 2008. 176(2): 494. https://doi.org/10.1016/j.jpowsour.2007.08.073
3. Hsieh C-T., Lin J-Yi., Wei J.-L. Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotube electrodes. Int. J. Hydrogen Energy. 2009. 34(2): 685. https://doi.org/10.1016/j.ijhydene.2008.11.008
4. Wang X., Waje M., Yan Y. CNT-Based Electrodes with High Efficiency for PEMFCs. Electrochem. Solid-State Lett. 2005. 8(1): A42. https://doi.org/10.1149/1.1830397
5. Wang G., Shen X., Yao J. Park J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon. 2009. 47(8): 2049. https://doi.org/10.1016/j.carbon.2009.03.053
6. Xin Y., Liu J., Jie X., Liu W., Liu F., Yin Y., Gu J., Zou Z. Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts. Electrochim. Acta. 2012. 60: 354. https://doi.org/10.1016/j.electacta.2011.11.062
7. Lin Z., Waller G., Liu Y., Liu M., Wong Ch.-P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea and its electrocatalytic activity toward oxygen reduction reaction. Adv. Energy Mater. 2012. 2(7): 884. https://doi.org/10.1002/aenm.201200038
8. Qu L.T., Liu Y., Baek J.B., Dai L. Nitrogen-doped grapheme as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano. 2010. 4(3): 1321. https://doi.org/10.1021/nn901850u
9. Lin Z.Y., Song M.K., Ding Y., Liu Y., Liu M., Wong Ch.-P. Facile preparation of nitrogen-doped grapheme as a metal-free catalyst for oxygen reduction reaction. Phys. Chem. Chem. Phys. 2012. 14: 3381. https://doi.org/10.1039/c2cp00032f
10. Shao Y., Zhang S., Wang C., Nie Z., Liu J., Wang Y., Lin Y. Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. J. Power Sources. 2010. 195(15): 4600. https://doi.org/10.1016/j.jpowsour.2010.02.044
11. Cano-Márquez A.G., Rodriguez-Macias F.J., Campos-Delgado J., Espinosa-González C.G., Tristán-López F., Ramírez-González D., Cullen D.A., Smith D.J., Terrones M., Vega-Cantú Y.I. Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 2009. 9(4): 1527. https://doi.org/10.1021/nl803585s
12. Kosynkin D.V., Lu W., Sinitskii A., Pera G., Sun Zh., Tour J.M. Highly conductive grapheme nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor. ACS Nano. 2011. 5(2): 968. https://doi.org/10.1021/nn102326c
13. Morelos-Gómez A., Vega-Díaz S.M., González V.J., Tristán-López F., Cruz-Silva R., Fujisawa K., Muramatsu H., Hayashi T., Mi X., Shi Y., Sakamoto H., Khoerunnisa F., Kaneko K., Sumpter B.G., Kim Y.A., Meunier V., Endo M., Mu-oz-Sandoval E., Terrones M. Clean nanotube unzipping by abrupt thermal expansion of molecular nitrogen: graphene nanoribbons with atomically smooth edges. ACS Nano. 2012. 6(3): 2261. https://doi.org/10.1021/nn2043252
14. Jiao L., Zhang L., Wang X., Diankov G., Dai H. Narrow graphene nanoribbons from carbon nanotubes. Nature. 2009. 458: 877. https://doi.org/10.1038/nature07919
15. Valentini L. Formation of unzipped carbon nanotubes by CF4 plasma treatment. Diamond Relat. Mater. 2011. 20(3): 445. https://doi.org/10.1016/j.diamond.2011.01.038
16. Mohammadi S., Kolahdouz Z., Darbari S., Mohajerzadeh S., Masoumi N. Graphene formation by unzipping carbon nanotubes using a sequential plasma assisted processing. Carbon. 2013. 52: 451. https://doi.org/10.1016/j.carbon.2012.09.056
17. Janowska I., Ersen O., Jacob T., Vennégues P., Bégin D., Ledoux M.-J., Pham-Huu C. Catalytic unzipping of carbon nanotubes to few–layer graphene sheets under microwaves irradiation. Appl. Catal. A. 2009. 371(1–2): 22.
18. Vadahanambi S., Jung J-H., Kumar R., Kim H.-J., Oh I.-K. An ionic liquid-assisted method for splitting carbon nanotubes to produce graphene nano–ribbons by microwave radiation. Carbon. 2013. 53: 391. https://doi.org/10.1016/j.carbon.2012.11.029
19. Elías A.L., Botello-Méndez As.R., Meneses-Rodríguez D., González V.J., Ramírez-González D., Ci L., Mu-oz-Sandoval E., Ajayan P.M., Terrones H., Terrones M. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett. 2009. 10(2): 366. https://doi.org/10.1021/nl901631z
20. Parashar U.K., Bhandari S., Srivastava R.K., Jariwalaet D., Srivastava A. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes. Nanoscale. 2011. 3(9): 3876. https://doi.org/10.1039/c1nr10483g
21. Jiao L., Wang X., Diankov G., Wang H., Dai H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 2010. 5: 321. https://doi.org/10.1038/nnano.2010.54
22. Xie L., Wang H., Jin C., Wang X., Jiao L., Suenaga K., Dai H. Graphene nanoribbons from unzipped carbon nanotubes: Atomic structures, Raman spectroscopy, and electrical properties. J. Am. Chem. Soc. 2011. 133(27): 10394. https://doi.org/10.1021/ja203860a
23. Kumar P., Panchakarla L.S., Rao C.N.R. Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons. Nanoscale. 2011. 3: 2127. https://doi.org/10.1039/c1nr10137d
24. Kim K., Sussman A., Zettl A. Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes. ACS Nano. 2010. 4(3): 1362. https://doi.org/10.1021/nn901782g
25. Talyzin A.V., Luzan S., Anoshkin I.V., Nasibulin A.G., Jiang H., Kauppinen E.I., Mikoushkin V.M., Shnitov V.V., Marchenko D.E., Noréus D. Hydrogenation, purification, and unzipping of carbon nanotubes by reaction with molecular hydrogen: Road to graphane nanoribbons. ACS Nano. 2011. 5(6): 5132. https://doi.org/10.1021/nn201224k
26. Pavia M.C., Xu W., Proenca M.F., Novais R.M., Lægsgaard E., Besenbacher F. Unzipping of functionalized multiwall carbon nanotubes induced by STM. Nano Lett. 2010. 10(5): 1764. https://doi.org/10.1021/nl100240n
27. Shinde D.B., Debgupta J., Kushwaha A., Aslam M., Pillai V.K. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons. J. Am. Chem. Soc. 2011. 133(12): 4168. https://doi.org/10.1021/ja1101739
28. Kosynkin D.V., Higginbotham A.L., Sinitskii A., Lomeda J.R., Dimiev A., Price B.K., Tour J.M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature. 2009. 458: 872. https://doi.org/10.1038/nature07872
29. Zhang S., Zhu L., Song H., Chen X., Wu B., Zhouet J., Wangal F. How grapheme is exfoliated from graphitic materials: synergistic effect of oxidation and intercalation processes in open, semi-closed, and closed carbon systems. J. Mater. Chem. 2012. 22: 22150. https://doi.org/10.1039/c2jm35139k
30. Zhu Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010. 22(35): 3906. https://doi.org/10.1002/adma.201001068
31. Pei S., Cheng H.-M. The reduction of graphene oxide. Carbon. 2012. 50(9): 3210. https://doi.org/10.1016/j.carbon.2011.11.010
32. Bratsch S.G. Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data. 1989. 18: 1. https://doi.org/10.1063/1.555839
33. Danilov M.O., Kolbasov G.Ya., Rusetskii I.A., Slobodyanyuk I.A. Electrocatalytic properties of multiwalled carbon nanotubes-based nanocomposites for oxygen electrodes. Russ. J. Appl. Chem. 2012. 85(10): 1536. https://doi.org/10.1134/S1070427212100084
34. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. (London: Academic Press, 1982).
35. Sing K.S.W., Everett D.H., Haul R.A.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985. 57(4): 603. https://doi.org/10.1351/pac198557040603
36. Zhang P., Xu F., Navrotsky A., Lee J.S., Kim S., Liu J. Surface enthalpies of nanophase ZnO with different morphologies . Chem. Mater. 2007. 19(23): 5687. https://doi.org/10.1021/cm0711919
37. Edelstein A.S., Cammarata K.C. Nanomaterials: Synthesis, Properties and Applications. (Washington: CRC Press, 1998).
38. Ganesan P., Ramakrishnan P., Prabu M., Shanmugam S. Nitrogen and sulfur Co-doped graphene supported cobalt sulfide nanoparticles as an efficient air cathode for zinc-air battery. Electrochim. Acta. 2015. 183: 63. https://doi.org/10.1016/j.electacta.2015.05.182
39. Liu Y., Li J., Li W., Li Y., Chen Q., Liu Ya. Spinel LiMn2O4 nanoparticles dispersed on nitrogen-doped reduced graphene oxide nanosheets as an efficient electrocatalyst for aluminium-air battery. Int. J. Hydrogen Energy. 2015. 40(30): 9225. https://doi.org/10.1016/j.ijhydene.2015.05.153
DOI: https://doi.org/10.15407/hftp07.01.003
Copyright (©) 2016 M. O. Danilov, I. A. Slobodyanyuk, I. A. Rusetskii, I. A. Farbun, G. Yа. Kolbasov
This work is licensed under a Creative Commons Attribution 4.0 International License.