Chemistry, Physics and Technology of Surface, 2016, 7 (1), 35-43.

Surface phenomena on the electrolyte gas bubbles and the MHD effect under the electrolysis of water in a magnetic field



DOI: https://doi.org/10.15407/hftp07.01.035

V. N. Zaichenko, I. A. Slobodyanyuk

Abstract


It is known that effect of an external constant magnetic field (CMF) on the process of electrolysis of water at a certain orientation of the vectors of the electric and magnetic fields reduces the overvoltage of hydrogen and oxygen evolution. The mechanism of this action due to the formation of magneto-hydrodynamic microvortices of electrolyte around the bubbles, facilitating their separation from the electrodes, i.e. removal electrolysis products, can take place, but it is not consistent with our results. We have found that due to the influence of CMF in the moment of separation from the electrode and within the initial section, the trajectory of the bubble is close to parabolic, which is then changed to a straight vertical motion. According to the Lorentz law, it has been found that hydrogen bubbles are negatively charged and those of oxygen - positively in the entire range of pH, including pH of 2.5, when the charge of bubbles due to adsorption of ions from the electrolyte is zero. It is known that the homogeneous CMF influence only on moving charges. It is suggested that such charges moving over the surface of the bubbles may be issued from the cathode electrons.

Keywords


electrolysis; hydrated electrons; Lorentz force; magnetic field; overpotential

Full Text:

PDF (Русский)

References


1. Kravchenko A.V., Kublanovsky V.S., Pivovarov A.A., Pustovoitenko V.P. Low-Temperature Plasma Electrolysis: Theory and Practice. (Dnepropetrovsk: Aktsent PP Ltd, 2013).

2. Gubkin Y. Elektrolytische Metallabscheidung an der freien Oberfläche einer Salzlösung. Ann. Phys. Chem. 1887. 32: 114.https://doi.org/10.1002/andp.18872680909

3. Makowetsky A. Über die Bildung von Wasserstoffsuperoxyd, Salpetersäure und Ammoniak bei der Glimmbogenentladung, unter Verwendung von Wasser als einer Elektrode. J. Electrochem. Appl. Phys. Chem. 1911. 17(6): 217.

4. Pisarzhevskii L.V., Rozenberg M. Electron in the Chemistry of Solutions and in Electrochemistry. (Kharkiv: State Publishing House of Ukraine, 1923).

5. Parmon V.N. Problem of photocatalytic water decomposition. In: Photocatalytic Solar Energy Conversion. Part 2. Molecular System for Water Decomposition. (Novosibirsk: Nauka, 1985). Antropov L.I. Solvated electrons and their possible role in electrode processes. In: Itogi nauki i tekhniki. T.6. Elektrokhimiya. (Moskva: VINITI, 1971). [in Russian].

6. Skolunov A.V., Tomilov A.P. On the possible participation of hydrated electrons in the electrolysis of aqueous solutions. Elektrokhimiya. 1992. 28(6): 887. [in Russian].

7. Shorygin A.P., Kazaryan E.V., Alimova R.Z. Action of magnetic field on jet flows in electrochemical cell with microelectrode in channel. Elektrokhimiya. 1979. 15(5): 678. [in Russian].

8. Zaichenko V.N. Motion of electrolyte and gas bubbles during electrolysis in a magnetic field. Journal of Applied Chemistry (Zhurnal prikladnoj khimii). 2012. 85(11): 1888. [in Russian].

9. Brandon N.P., Kelsall G.H., Levine S., Smith A.L. Interfacial electrical properties of electrogenerated bubbles. J. Appl. Electrochem. 1985. 15(4): 485.https://doi.org/10.1007/BF01059289

10. Iida T., Matsushima H., Fukunaka Y. Water electrolysis under a magnetic field. J. Electrochem. Soc. 2007. 154(8): 112.https://doi.org/10.1149/1.2742807

11. Koza J.A., Mühlenhoff S., Żabiński P., Nikrityuk P.A., Eckert K., Uhlemann M., Gebert A., Weier T., Schultz L., Odenbach S. Hydrogen evolution under the influence of a magnetic field. Electrochim. Acta. 2011. 56(6): 2665. https://doi.org/10.1016/j.electacta.2010.12.031

12. Fuchs E.C., Wexler A.D., Paulitsch-Fuchs A.H., Agostinho L.L.F., Yntema D., Woisetschläger J. The Armstrong experiment revisited. Eur. Phys. J. Special Topics. 2014. 223(5): 959.https://doi.org/10.1140/epjst/e2013-01924-x

13. Woisetschläger J., Gatterer K., Fuchs E.C. Experiments in a floating water bridge. Exp. Fluids. 2010. 48(1): 121.https://doi.org/10.1007/s00348-009-0718-2

14. Hart E., Anbar M. The hydrated electron. (Moscow: Mir , 1973).




DOI: https://doi.org/10.15407/hftp07.01.035

Copyright (©) 2016 V. N. Zaichenko, I. A. Slobodyanyuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.