Silica nanocomposites doped with silver, copper, or zinc compound and their antimicrobial properties
DOI: https://doi.org/10.15407/hftp07.01.044
Abstract
Keywords
References
1. Mashkovskii M.D. Drugs. (Moscow: New Wave, 2012) [in Russian].
2. Nowack B., Krug H.F., Height M. 120 Years of Nanosilver History: Implications for Policy Makers. Environ. Sci. Technol. 2011. 45(4): 1177. https://doi.org/10.1021/es103316q
3. Blagitko E.M., Burmistrov V.A., Kolesnikov A.P., Mikhailov Iu.I., Rodionov P.P. Silver in Medicine. (Novosibirsk: Science Center, 2004). [in Russian].
4. Chekman I.S., Ulberg Z.R., Malanchuk V.O., Gorchakova N.O., Zupanetc I.A. Nanoscience, Nanobiology, Nanopharmaceutics. (Kyiv: Polygraph Plus, 2012). [in Ukrainian].
5. Tolstov A.L., Malanchuk O.N., Bei I.N. Klimchuk D.A. Preparation and antibacterial properties of polymer composites based on polyvinyl alcohol and silver nanoparticles. J. Appl. Polym. Sci. 2013. 35(3): 343. [in Russian].
6. Sapyanenko O.O., Dzubenko L.S., Gorbik P.P. Tsebrenko M.V., Mel'nik I.A. Influence of bactericidal and nano-disperse Ag/SiO2 addition on structure and properties of micro fiber polypropylene materials. Surface. 2012. 4(12): 219. [in Ukrainian].
7. Guo L., Yuan W., Lu Zh. Chang M.Li. Polymer/nanosilver composite coatings for antibacterial applications. Colloids Surf., A. 2013. 439: 69. https://doi.org/10.1016/j.colsurfa.2012.12.029
8. Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009. 27(1): 76. https://doi.org/10.1016/j.biotechadv.2008.09.002
9. Zielecka M., Bujnowska E., Kępska B., Wendaa M., Piotrowskab M. Antimicrobial additives for architectural paints and impregnates. Prog. Org. Coat. 2011. 72(1–2): 193. https://doi.org/10.1016/j.porgcoat.2011.01.012
10. Jaiswal S., McHale P., Duffy B. Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol–gel surfaces. Colloids Surf. B. 2012. 94: 170. https://doi.org/10.1016/j.colsurfb.2012.01.035
11. Bagchi B., Kar S., Dey S. Kr., Bhandary S, Roy D, Mukhopadhyay TK, Das S, Nandy P. In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloids Surf. B. 2013. 108: 358. https://doi.org/10.1016/j.colsurfb.2013.03.019
12. Demirci S., Ustaoğlu Z., Yılmazer G. A. Sahin F, Baç N. Antimicrobial Properties of Zeolite-X and Zeolite-A Ion-Exchanged with Silver, Copper, and Zinc Against a Broad Range of Microorganisms. Appl. Biochem. Biotechnol. 2014. 172(3): 1652. https://doi.org/10.1007/s12010-013-0647-7
13. Min S.-H., Yang J.-H., Kim J. Y. Kwon Y. Development of white antibacterial pigment based on silver chloride nanoparticles and mesoporous silica and its polymer composite. Microporous Mesoporous Mater. 2010. 128(1–3): 19. https://doi.org/10.1016/j.micromeso.2009.07.020
14. Han J., Fang P., Jiang W. Li L., Guo R. Ag-Nanoparticle-Loaded Mesoporous Silica: Spontaneous Formation of Ag Nanoparticles and Mesoporous Silica SBA-15 by a One-Pot Strategy and Their Catalytic Applications. Langmuir. 2012. 28(10): 4768. https://doi.org/10.1021/la204503b
15. Suárez M., Esteban-Tejeda L., Malpartida F. Fernándezd A., Torrecillasa R., Moyab J.S. Biocide activity of diatom-silver nanocomposite. Mater. Lett. 2010. 64(19): 2122. https://doi.org/10.1016/j.matlet.2010.06.061
16. Nischala K., Rao T. N., Hebalkar N. Silica–silver core–shell particles for antibacterial textile application. Colloids Surf., B. 2011. 82(1): 203. https://doi.org/10.1016/j.colsurfb.2010.08.039
17. Lee J.-M., Kim D.-W., Jun Y.-D. Oh S. Preparation of silica–silver heterogeneous nanocomposite particles by one-pot preparation strategy using polyol process: Size-controlled immobilization of silver nanoparticles. Mater. Res. Bull. 2006. 41(8): 1407. https://doi.org/10.1016/j.materresbull.2006.02.010
18. Flores J.C., Torres V., Popa M., Crespo D., Calderón-Moreno J.M. Preparation of core–shell nanospheres of silica–silver: SiO2@Ag. J. Non-Cryst. Solids. 2008. 354(52–54): 5435. https://doi.org/10.1016/j.jnoncrysol.2008.09.014
19. Grigoreva T.F., Vorsina I.A., Barinova A.P. Mechanochemical syntheses of disperse laminate composites based on kaolinite and a number of organic and inorganic acids. Investigation by infrared spectroscopy. Inorgan. Mater. 1996. 32(2): 214 [in Russian].
20. Shakhtshneider T.P., Myz S.A., Mikhailenko M.A. Drebushchak T.N., Drebushchak V.A., Fedotov A.P., Medvedeva A.S., Boldyrev V.V. Mechanochemical synthesis of nanocomposites of drugs with inorganic oxides. Mater. Manufacture Process. 2009. 24: 1064. https://doi.org/10.1080/10426910902979124
21. Voronin E.F., Nosach L.V., Oranskaya E.I., Borisenko N.V., Chekman I.S. Stabilization of highly dispersed CuSO4 state by forming of monolayer on the surface of silica nanoparticles during mechanical activation. Reports of NAS of Ukraine. 2010. 10: 109. [in Russian].
22. Vorsina I.A., Grigoreva T.F., Udalova T.A., Vosmerikov S.V., Ovchinnikov E.V., Struk V.A., Lyahov N.Z. Mechanochemical interaction in the polymer-silica system. J. Appl. Spectrosc. 2014. 81(2): 250. [in Russian]. https://doi.org/10.1007/s10812-014-9917-6
23. Heinlaan M., Ivask A., Blinova I. Dubourguierb H., Kahrua A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphniamagna and Thamnocephalus-platyurus. Chemosphere. 2008. 71(7): 1308. https://doi.org/10.1016/j.chemosphere.2007.11.047
24. Dutta R.K., Sharma P.K., Bhargava R. Kumar N, Pandey AC. Differential Susceptibility of Escherichia coli Cells toward Transition Metal-Doped and Matrix-Embedded ZnO Nanoparticles. J. Phys. Chem. B. 2010. 114(16): 5594. https://doi.org/10.1021/jp1004488
25. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. X-ray and electron-optical analysis. Textbook for high schools, 4th ed. (Moscow: MISiS, 2002). [in Russian].
26. Gun'ko V.M., Bogatyrov V.M., Oranska O.I., Borysenko L.I., Skubiszewska-Zięba J., Książek A., Leboda R. Structural features of ZnxOy/nanosilica composites. Appl. Surf. Sci. 2013. 276: 802. https://doi.org/10.1016/j.apsusc.2013.04.002
27. Huanga N.M., Limb H.N., Radimanc S., Khiew P.S., Chiu W.S., Hashim R., Chia C.H. Sucrose ester micellar-mediated synthesis of Ag nanoparticles and the antibacterial properties. Colloid. Surf., A. 2010. 353(1): 69.
28. Janardhanan R., Karuppaiah M., Hebalkar N. Rao T.N. Synthesis and surface chemistry of nano silver particles. Polyhedron. 2008. 28(12): 2522. https://doi.org/10.1016/j.poly.2009.05.038
29. Zhu M., Qian G., Ding G. Wang Z., Wang M. Plasma resonance of silver nanoparticles deposited on the surface of submicron silica spheres. Mater. Chem. Phys. 2006. 96(2–3): 489. https://doi.org/10.1016/j.matchemphys.2005.07.040
30. Lee J.-M., Kim D.-W., Jun Y.-D., Oh S.-G. Preparation of silica–silver heterogeneous nanocomposite particles by one-pot preparation strategy using polyol process: Size-controlled immobilization of silver nanoparticles. Mater. Res. Bull. 2006. 41(8): 1407. https://doi.org/10.1016/j.materresbull.2006.02.010
31. Magaev O.V., Knyazev A.S., Kreyker A.A., Gordeev A.V., Pavlova O.S., Vodyankina O.V., Kurina L.N. Diols conversion patterns in to the highly effective nanostructured catalysts. Fundamental researches. 2009. 3: 94. [in Russian].
32. Nosach L.V., Grebenyuk A.G., Voronin E.F., Pahlov E.M., Oranskaya E.I. Structure and electronic spectra of silver nanostructures in composites with highly dispersed silica. Scientific Notes of Taurida National V.I. Vernadsky University, "Biology, Chemistry". 2011. 24(63)(3): 159. [in Russian].
33. Tohidi S. H., Novinrooz A. J., Derhambakhsh M., Grigoryan G. L. Dependence of Spectroscopic Properties of Copper Oxide Based Silica Supported Nanostructure on Temperature. Int. J. Nanosci. Nanotechnol. 2012. 8(3): 143.
34. Zhang R., Sun Y., Peng S. Dehydrogination of methyl formate over CuO-SiO2 catalyst. React. Kinet. Catal. Lett. 1999. 67(1): 95. https://doi.org/10.1007/BF02475833
35. Smolentseva E.V., Pestryakov A.N., Tuzovskaya I.V. Bogdanchikova N.E., Simakov A.V., Avalos M. Effect of copper additives on electronic and structural characteristics of gold deposited on the zeolite type mordenite. Bulletin of the Tomsk Polytechnic University. 2005. 308(4): 99. [in Russian].
36. Corro G., Pal U., Tellez N. Biodiesel production from Jatropha curcas crude oil using ZnO/SiO2 photocatalyst for free fatty acids esterification. Appl. Catal., B. 2013. 129: 39. https://doi.org/10.1016/j.apcatb.2012.09.004
37. Volyanskiy Yu.L., Gritsenko I.S., Shirobokov V.P. Investigation of the specific activity of antimicrobial drugs. Methodical recommendations. (Kiev: MH Ukraine, State. Pharm. center 2004). [in Ukrainian].
38. Determination of the sensitivity of microorganisms to antibiotics. Methodical instructions. N MB 9.9.5-143-2007. (Kyiv, Ukraine Ministry of Health, 2007). [in Ukrainian].
39. Hayimzon I.I., Zheliba V.T. Fundamentals of medical informatics. (Kyiv: High School, 1998). [in Ukrainian].
40. Gun'ko V.M., Voronin E.F., Nosach L.V., Turov V.V., Wang Z., Vasilenko A.P., Leboda R., Skubiszewska-Zięba J., Janusz W., Mikhalovsky S.V. Structural, textural and adsorption characteristics of nanosilica mechanochemically activated in different media. J. Colloid Interface Sci. 2011. 355: 300. https://doi.org/10.1016/j.jcis.2010.12.008
41. Boldyrev V.V. Hydrothermal reactions under mechanochemical action. Powder Technology. 2002. 122: 247. https://doi.org/10.1016/S0032-5910(01)00421-1
DOI: https://doi.org/10.15407/hftp07.01.044
Copyright (©) 2016 V. M. Bogatyrov, O. I. Oranska, M. V. Galaburda, I. I. Gerashchenko, T. P. Osolodchenko, V. I. Yusypchuk
This work is licensed under a Creative Commons Attribution 4.0 International License.