Antiozonate activity of mono- and bimetal complexes of 3d-metals with salicylaliminopropyl groups immobilized on nanosilica
DOI: https://doi.org/10.15407/hftp07.01.065
Abstract
Keywords
References
1. Yordanov N.D., Karadzhov Y. Studies on intermolecular interactions of metal chelate complexes. Part X. Interactions of metal chelates with ozone. Transition. Met. Chem. 1985. 10(1): 15. https://doi.org/10.1007/BF00620624
2. Yatsimirskii K.B., Chuiko A.A., Filippov A.P. Complexes of copper, molybdenum and palladium with nitrogen-containing ligands anchored on the silica surface. Dokl. AN SSSR. 1977. 237(5): 1137. [in Russian].
3. Rakitskaya T.L., Truba A.S., Raskola L.A., Bandurko A.Yu., Golub A.A. Effect of the structure of copper(II) complexes, adsorbed on the surface of SiO2, on their catalytic activity in ozone decomposition. Theor. Exp. Chem. 2006. 42(1): 60. https://doi.org/10.1007/s11237-006-0019-2
4. Rakitskaya T.L., Bandurko A.Yu., Truba A.S., Raskola L.A., Golub A.A. 3d metal complexes with 2-hydroxy-3-methoxybenzaliminopropyl and 4-hydroxy-3-methoxybenzaliminopropyl immobilized on aerosil as catalysts of ozone decomposition. Russ. J. Gen. Chem. 2006. 76(8): 1266. https://doi.org/10.1134/S1070363206080184
5. Rakitskaya T.L., Truba A.S., Golub A.A., Kiose T.A., Radchenko E.A. Effect of composition and structure of cobalt(II) complexes with oxyaldiminopropylaerosils on their catalytic activity in the decomposition of ozone. Theor. Exp. Chem. 2011. 47(5): 337. https://doi.org/10.1007/s11237-011-9224-8
6. Rakitskaya T.L., Truba A.S., Raskola L.A., Radchenko E.A., Strizhak A.V., Golub A.A. Antiozonante activity of the silica modified with 3d-metal complexes. Russ. J. Gen. Chem. 2013. 83(2): 360. https://doi.org/10.1134/S1070363213020205
7. Oyama S.T. Chemical and catalytic properties of ozone. Catal. Rev. Sci. Eng. 2000. 42(3): 279. https://doi.org/10.1081/CR-100100263
8. Kozhevnikov I.V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem. Rev. 1998. 98(1): 171. https://doi.org/10.1021/cr960400y
9. Virdis A., Viola A., Goo G. A novel kinetic mechanism of aqueous-phase ozone decomposition. Ann. Chim. 1995. 85: 633.
10. Westerhoff P., Song R., Amy G., Minear R. Applications of ozone decomposition models. Ozone Sci. Eng. 1997. 19(1): 55. https://doi.org/10.1080/01919519708547318
11. Nemes A., Fábian I., Eldik R. Kinetics and mechanism of the carbonate ion inhibited aqueous ozone decomposition. J. Phys. Chem. A. 2000. 104(34): 7995. https://doi.org/10.1021/jp000972t
12. Ulrich R.K., Rochelle G.T., Prada R.E. Enhanced oxygen absorption into bisulphite solutions containing transition metal ion catalysts. Chem. Eng. Sci. 1986. 41(8): 2183. https://doi.org/10.1016/0009-2509(86)87134-2
13. Ibusuki T., Takeuchi K. Sulfur dioxide oxidation by oxygen catalyzed by mixtures of manganese(II) and iron(III) in aqueous solutions at environmental reaction conditions. Atmospheric Environment. 1987. 21(7): 1555. https://doi.org/10.1016/0004-6981(87)90317-9
14. McElroy W.J., Waygood S.J. Kinetics of the reactions of the SO4– radical with SO4–, S2O82–, H2O and Fe2+. J. Chem. Soc. Faraday Trans. 1990. 86(14): 2557. https://doi.org/10.1007/978-94-009-0567-2_39
15. Grgic I., Hudnik V., Bizjak M., Levec J. Aqueous S(IV) oxidation – II. Synergistic effects of some metal ions. Atmospheric Environment. 1992. 26A(4): 571. https://doi.org/10.1016/0960-1686(92)90170-P
16. Ermakov A.N., Larin I.K., Ugarov A.A., Purmal’ A.P. On catalysis of SO2 oxidation in atmosphere by iron ions. Kinetika i kataliz. 2003. 44(4): 524. [in Russian].
17. Rakitskaya T.L., Bandurko A.Y., Raskola L.A. Catalysts for low-temperature decomposition of ozone: the state and prospects of development. Bulletin of the Odessa National University. Chemistry. 2012. 6(7): 13. [in Russian].
DOI: https://doi.org/10.15407/hftp07.01.065
Copyright (©) 2016 T. L. Rakyts'ka, A. S. Truba, E. O. Radchenko, A. A. Golub
This work is licensed under a Creative Commons Attribution 4.0 International License.