Chemistry, Physics and Technology of Surface, 2016, 7 (1), 86-96.

States of water vs. temperature in differently hydrated kefir grains



DOI: https://doi.org/10.15407/hftp07.01.086

V. M. Gun'ko, V. V. Turov, T. V. Krupska, A. P. Golovan, E. M. Pakhlov, M. D. Tsapko, J. Skubiszewska-Zięba, B. Charmas

Abstract


Kefir grains (KG) were studied using low-temperature 1H NMR spectroscopy, DSC, and thermogravimetry to analyse the influence of the hydration degree on the properties of water bound in KG, as well as effects of dispersion media (air, weakly polar CDCl3, CDCl3 + F3CCOOD) and temperature. An increase in water content added to dried KG results in changes in water structure and supramolecular organisation in bacteria, low- and high-molecular components of KG. Five types of water are observed in KG: (i) weakly associated water characterised by a low value of the chemical shift of proton resonance dH = 1–2 ppm; (ii) strongly associated water at dH  = 4–5.5 ppm (similar to that of bulk water), (iii) weakly bound water frozen at 265 K < T < 273 K; (iv) strongly bound water frozen at 200 K < T < 265 K; and (v) bulk water, which does not directly interact with bacteria, cells, and macromolecules. NMR cryoporometry and thermoporometry based on both DSC and thermogravimetry give close results and show detailed changes in intracellular and extracellular organisations of water and other low-molecular weight compounds due to hydration/dehydration, addition of weakly polar (CDCl3) or strongly polar (F3CCOOD) compounds, heating or freezing.

Keywords


kefir grains; weakly associated and strongly associated water

Full Text:

PDF

References


1. Farnworth E.R. Handbook of fermented functional foods. (London: CRC Press, 2003). https://doi.org/10.1201/9780203009727

2. Farnworth E.R. Kefir – a complex probiotic. Food Science and Technology Bulletin: Functional foods. 2005. 2(1): 1. https://doi.org/10.1616/1476-2137.13938 

3. Lopitz-Otsoa F., Rementeria A., Elguezabal N., Garaizar J. Kefir: a symbiotic yeasts-bacteria community with alleged healthy capabilities. Rev. Iberoam. Micol. 2006. 23(2): 67. https://doi.org/10.1016/S1130-1406(06)70016-X

4. Silva K.R., Rodrigues S.A., Xavier L., Lima A.S. Antimicrobial activity of broth fermented with kefir grains. Appl. Biochem. Biotechnol. 2009. 152(2): 316. https://doi.org/10.1007/s12010-008-8303-3

5. Adriana P., Socaciu C. Probiotic activity of mixed cultures of kefir's lactobacilli and non-lactose fermenting yeasts. Bulletin UASVM, Agriculture. 2008. 65(2): 1843.

6. Chen Z., Shi J., Yang X., Nan B., Liu Y., Wang Z. Chemical and physical characteristics and antioxidant activities of the exopolysaccharide produced by Tibetan kefir grains during milk fermentation. Int. Dairy J. 2015. 43: 15.   https://doi.org/10.1016/j.idairyj.2014.10.004

7. Goff H.D. Colloidal aspects of ice-cream: a review. Int. Dairy J. 1997. 7(6–7): 363;  https://doi.org/10.1016/S0958-6946(97)00040-X

8. Schuck P., Davenel A., Mariette F., Briard V., Méjean S., Piot M. Rehydration of casein powders: Effects of added mineral salts and salt addition methods on water transfer. Int. Dairy J. 2002. 12(1): 51;   https://doi.org/10.1016/S0958-6946(01)00090-5

9. Lucas T., Le Ray D., Barey P., Mariette F. NMR assessment of ice cream: Effect of formulation on liquid and solid fat. Int. Dairy J. 2005. 15(12): 1225; https://doi.org/10.1016/j.idairyj.2004.06.012

10. Fuquay J.W., Fox P.F., McSweeney P.L.H. (Eds.) Encyclopedia of Dairy Sciences. 2nd Edition. (Oxford: Academic Press, 2011).

11. Franks F. Biophysics and biochemistry at low temperature. (Cambridge: University Press, 1985);

12. Coulibaly I., Dubois-Dauphin R., Destain J., Fauconnier M.-L., Lognay G., Thonart P. The resistance to freeze-drying and to storage was determined as the cellular ability to recover its survival rate and acidification activity. International Journal of Microbiology. 2010. 2010: 625239.

13. Gun'ko V.M., Turov V.V. Nuclear magnetic resonance studies of interfacial phenomena. (Boca Raton: CRC Press, 2013).  https://doi.org/10.1201/b14202

14. Chaplin M. Water structure and science. 2015. http://www.lsbu.ac.uk/water/;

15. Gaspar P., Carvalho A.L., Vinga S., Santos H., Neves A.R. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol. Adv. 2013. 31(6): 764;   https://doi.org/10.1016/j.biotechadv.2013.03.011

16. Crowley S., Mahony J., van Sinderen D. Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends in Food Science & Technology. 2013. 33(2): 93;  https://doi.org/10.1016/j.tifs.2013.07.004

17. Tsakalidou E., Papadimitriou K. Stress responses of lactic acid bacteria. (Springer Science & Business Media, 2011); https://doi.org/10.1007/978-0-387-92771-8

18. Hofvendahl K., Hahn–Hägerdal B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 2000. 26(2–4): 87; https://doi.org/10.1016/S0141-0229(99)00155-6

19. Toy N., Özogul F., Özogul Y. The influence of the cell free solution of lactic acid bacteria on tyramine production by food borne-pathogens in tyrosine decarboxylase broth. Food Chem. 2015. 173: 45;   https://doi.org/10.1016/j.foodchem.2014.10.001

20. Jennings T.A. Lyophilization: Introduction and Basic Principles. (Boca Raton: Interpharm/CRC, 2002).

21. Chen Z., Kang L., Wang Z., Xu F., Gu G., Cui F., Guo Z. Recent progress in the research of biomaterials regulating cell behavior. RSC Adv. 2014. 4: 63807.  https://doi.org/10.1039/C4RA05534A

22. Mellati A., Dai S., Bi J., Jin B., Zhang H. A biodegradable thermosensitive hydrogel with tuneable properties for mimicking threedimensional microenvironments of stem cells. RSC Adv. 2014. 4: 63951.   https://doi.org/10.1039/C4RA12215A

23. Mitchell J., Webber J.B.W., Strange J.H. Nuclear magnetic resonance cryoporometry. Phys. Rep. 2008. 461(1): 1. https://doi.org/10.1016/j.physrep.2008.02.001

24. Wunderlich B. Thermal analysis. (New York: Academic Press, 1990).

25. Bertram H.C., Wiking L., Nielsen J.H., Andersen H.J. Direct measurement of phase transitions in milk fat during cooling of cream – a low-field NMR approach. Int. Dairy J. 2005. 15(10): 1056.  https://doi.org/10.1016/j.idairyj.2004.10.005

26. Métais A., Cambert M., Riaublanc A., Mariette F. Influence of fat globule membrane composition on water holding capacity and water mobility in casein rennet gel: A nuclear magnetic resonance self-diffusion and relaxation study. Int. Dairy J. 2006. 16(4): 344. https://doi.org/10.1016/j.idairyj.2005.03.011

27. Berner D., Viernstein H. Effect of protective agents on the viability of Lactococcus lactis subjected to freeze-thawing and freeze-drying. Sci. Pharm. 2006. 74: 137. https://doi.org/10.3797/scipharm.2006.74.137

28. Salomonsen T., Sejersen M.T., Viereck N., Ipsen R., Engelsen S.B. Water mobility in acidified milk drinks studied by low-field 1H NMR. Int. Dairy J. 2007. 17(4): 294. https://doi.org/10.1016/j.idairyj.2006.04.003

29. Van lent K., Vanlerberghe B., Van Oostveldt P., Thas O., Van der Meeren P. Determination of water droplet size distribution in butter: Pulsed field gradient NMR in comparison with confocal scanning laser microscopy. Int. Dairy J. 2008. 18(1): 12. https://doi.org/10.1016/j.idairyj.2007.07.002

30. Noronha N., Duggan E., Ziegler G.R., O'Riordan E.D., O'Sullivan M. Investigation of imitation cheese matrix development using light microscopy and NMR relaxometry. Int. Dairy J. 2008. 18(6): 641.   https://doi.org/10.1016/j.idairyj.2007.12.004

31. Grivet J.-P., Delort A.-M. NMR for microbiology: In vivo and in situ applications. Prog. Nucl. Magn. Reson. Spectrosc. 2009. 54(1): 1. https://doi.org/10.1016/j.pnmrs.2008.02.001

32. Kaufmann N., Andersen U., Wiking L. Shear and rapeseed oil addition affect the crystal polymorphic behavior of milk fat. J. Am. Oil Chem. Soc. 2013. 90(6): 871.  https://doi.org/10.1007/s11746-013-2226-z

33. Mikhalovska L.I., Gun'ko V.M., Rugal A.A., Oranska O.I., Gornikov Yu.I., Morvan C., Domas C., Mikhalovsky S.V. Cottonised flax fibres vs. cotton fibres: structural, textural and adsorption characteristics. RSC Adv. 2012. 2: 2032.   https://doi.org/10.1039/c2ra00725h

34. Bershtein V.A., Gun'ko V.M., Egorova L.M., Wang Z., Illsley M., Voronin E.F., Prikhod'ko G.P., Yakushev P.N., Leboda R., Skubiszewska-Zięba J. and Mikhalovsky S.V. Dynamics, thermal behaviour and elastic properties of thin films of poly(vinyl alcohol) nanocomposites. RSC Adv. 2012. 2: 1424.   https://doi.org/10.1039/C1RA00535A

35. Bershtein V.A., Gun'ko V.M., Karabanova L.V., Sukhanova T.E., Yakushev P.N., Egorova L.M., Turova A.A., Zarko V.I., Pakhlov E.M., Vylegzhanina M.E., Mikhalovsky S.V. Polyurethane–poly(2-hydroxyethyl methacrylate) semi-IPN–nanooxide composites. RSC Adv. 2013. 3: 14560.  https://doi.org/10.1039/c3ra40295a

36. Mikhalovsky S.V., Gun'ko V.M., Bershtein V.A., Turov V.V., Egorova L.M., Morvan C., Mikhalovska L.I. A comparative study of air-dry and water swollen flax and cotton fibres. RSC Adv. 2012. 2: 2868.   https://doi.org/10.1039/c2ra00609j 

37. Gun'ko V.M., Turov V.V., Bogatyrev V.M., Zarko V.I., Leboda R., Goncharuk E.V., Novza A.A., Turov A.V., Chuiko A.A. Unusual properties of water at hydrophilic/hydrophobic interfaces. Advances in Colloid and Interface Science. 2005. 118(1–3): 125.  https://doi.org/10.1016/j.cis.2005.07.003 

38. Gun'ko V.M., Turov V.V., Krupska T.V., Tsapko M.D., Skubiszewska-Zięba J., Charmas B., Leboda R. Effects of strongly aggregated silica nanoparticles on interfacial behaviour of water bound to lactic acid bacteria. RSC Adv. 2015. 5: 7734.   https://doi.org/10.1039/C4RA15220D

39. Hay J.N., Laity P.R. Observations of water migration during thermoporometry studies of cellulose films. Polymer. 2000. 41(16): 6171. https://doi.org/10.1016/S0032-3861(99)00828-9

40. Landry M.R. Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim. Acta. 2005. 433(1–2): 27.  https://doi.org/10.1016/j.tca.2005.02.015

41. Goworek J., Stefaniak W., Zgrajka W. Measuring porosity of polymeric adsorbents by temperature programmed desorption of liquids. Mater. Chem.Phys. 1999. 59(2): 149.  https://doi.org/10.1016/S0254-0584(99)00017-6

42. Goworek J., Stefaniak W., Prudaczuk M. The influence of polarity of liquids on the parameters characterising the porosity of silica gels estimated by thermogravimetric analysis. Thermochim. Acta. 2001. 379(1–2): 117.   https://doi.org/10.1016/S0040-6031(01)00610-4

43. Gun'ko V.M., Goncharuk O.V., Goworek J. Evaporation of polar and nonpolar liquids from silica gels and fumed silica. Colloids Surf., A. 2015. 474: 52. https://doi.org/10.1016/j.colsurfa.2015.03.007

44. Abragam A. The principles of nuclear magnetism. (Oxford: Oxford University Press, 1961).

45. Höhne G., Hemminger W., Flammersheim H.-J. Differential scanning calorimetry – An introduction for practitioners. (Springer-Verlag, 1996). https://doi.org/10.1007/978-3-662-03302-9

46. Lee J., Kaletunç G. Evaluation of the heat inactivation of Escherichia coli and Lactobacillus plantarum by differential scanning calorimetry. Appl. Environ. Microbiol. 2002. 68(11): 5379.  https://doi.org/10.1128/AEM.68.11.5379-5386.2002

47. Mohacsi-Farkas C., Farkas J., Meszaros L., Reichart O., Andrassy E. Thermal denaturation of bacterial cells examined by differential scanning calorimetry. J. Therm. Anal. Calorim. 1999. 57(2): 409.   https://doi.org/10.1023/A:1010139204401




DOI: https://doi.org/10.15407/hftp07.01.086

Copyright (©) 2016 V. M. Gun'ko, V. V. Turov, T. V. Krupska, A. P. Golovan, E. M. Pakhlov, M. D. Tsapko, J. Skubiszewska-Zięba, B. Charmas

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.